Dead Gate Elimination
- URL: http://arxiv.org/abs/2504.12729v2
- Date: Wed, 23 Apr 2025 09:45:20 GMT
- Title: Dead Gate Elimination
- Authors: Yanbin Chen, Christian B. Mendl, Helmut Seidl,
- Abstract summary: We propose a novel circuit optimization technique that identifies and removes dead gates.<n>We prove that the removal of dead gates has no influence on the probability distribution of the measurement outcomes that contribute to the subsequent calculation result.
- Score: 0.13108652488669736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid quantum algorithms combine the strengths of quantum and classical computing. Many quantum algorithms, such as the variational quantum eigensolver (VQE), leverage this synergy. However, quantum circuits are executed in full, even when only subsets of measurement outcomes contribute to subsequent classical computations. In this manuscript, we propose a novel circuit optimization technique that identifies and removes dead gates. We prove that the removal of dead gates has no influence on the probability distribution of the measurement outcomes that contribute to the subsequent calculation result. We implemented and evaluated our optimization on a VQE instance, a quantum phase estimation (QPE) instance, and hybrid programs embedded with random circuits of varying circuit width, confirming its capability to remove a non-trivial number of dead gates in real-world algorithms. The effect of our optimization scales up as more measurement outcomes are identified as non-contributory, resulting in a proportionally greater reduction of dead gates.
Related papers
- Quantum Multiplexer Simplification for State Preparation [0.7270112855088837]
We propose an algorithm that detects whether a given quantum state can be factored into substates.
The simplification is done by eliminating controls of quantum multiplexers.
Considering efficiency in terms of depth and number of CNOT gates, our method is competitive with the methods in the literature.
arXiv Detail & Related papers (2024-09-09T13:53:02Z) - The Questionable Influence of Entanglement in Quantum Optimisation Algorithms [4.118849293881126]
Variational Quantum Eigensolver (VQE) is promising compared to other quantum algorithms.
Recent research raises questions about the effectiveness of entanglement in circuits for quantum machine learning algorithms.
arXiv Detail & Related papers (2024-07-24T12:04:00Z) - Reducing Mid-Circuit Measurements via Probabilistic Circuits [0.13108652488669736]
Mid-circuit measurements and measurement-controlled gates are supported by an increasing number of quantum hardware platforms.
This work presents a static circuit optimization that can substitute some of these measurements with an equivalent circuit with randomized gate applications.
arXiv Detail & Related papers (2024-05-22T15:33:19Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
We develop AlphaTensor-Quantum, a method to minimize the number of T gates that are needed to implement a given circuit.
Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets.
Remarkably, it discovers an efficient algorithm akin to Karatsuba's method for multiplication in finite fields.
arXiv Detail & Related papers (2024-02-22T09:20:54Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Limitations of variational quantum algorithms: a quantum optimal
transport approach [11.202435939275675]
We obtain extremely tight bounds for standard NISQ proposals in both the noisy and noiseless regimes.
The bounds limit the performance of both circuit model algorithms, such as QAOA, and also continuous-time algorithms, such as quantum annealing.
arXiv Detail & Related papers (2022-04-07T13:58:44Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.