Multi-Agent Reinforcement Learning Simulation for Environmental Policy Synthesis
- URL: http://arxiv.org/abs/2504.12777v1
- Date: Thu, 17 Apr 2025 09:18:04 GMT
- Title: Multi-Agent Reinforcement Learning Simulation for Environmental Policy Synthesis
- Authors: James Rudd-Jones, Mirco Musolesi, María Pérez-Ortiz,
- Abstract summary: Climate policy development faces significant challenges due to deep uncertainty, complex system dynamics, and competing stakeholder interests.<n>We propose a framework for augmenting climate simulations with Multi-Agent Reinforcement Learning (MARL) to address these limitations.
- Score: 5.738989367102034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate policy development faces significant challenges due to deep uncertainty, complex system dynamics, and competing stakeholder interests. Climate simulation methods, such as Earth System Models, have become valuable tools for policy exploration. However, their typical use is for evaluating potential polices, rather than directly synthesizing them. The problem can be inverted to optimize for policy pathways, but the traditional optimization approaches often struggle with non-linear dynamics, heterogeneous agents, and comprehensive uncertainty quantification. We propose a framework for augmenting climate simulations with Multi-Agent Reinforcement Learning (MARL) to address these limitations. We identify key challenges at the interface between climate simulations and the application of MARL in the context of policy synthesis, including reward definition, scalability with increasing agents and state spaces, uncertainty propagation across linked systems, and solution validation. Additionally, we discuss challenges in making MARL-derived solutions interpretable and useful for policy-makers. Our framework provides a foundation for more sophisticated climate policy exploration while acknowledging important limitations and areas for future research.
Related papers
- Large language models in climate and sustainability policy: limits and opportunities [1.4843690728082002]
We apply different NLP techniques, tools and approaches to climate and sustainability documents to derive policy-relevant and actionable measures.<n>We find that the use of LLMs is successful at processing, classifying and summarizing heterogeneous text-based data.<n>Our work presents a critical but empirically grounded application of LLMs to complex policy problems and suggests avenues to further expand Artificial Intelligence-powered computational social sciences.
arXiv Detail & Related papers (2025-02-04T10:13:14Z) - Crafting desirable climate trajectories with RL explored socio-environmental simulations [3.554161433683967]
Integrated Assessment Models (IAMs) combine social, economic, and environmental simulations to forecast potential policy effects.
Recent preliminary work using Reinforcement Learning (RL) to replace the traditional solvers shows promising results in decision making in uncertain and noisy scenarios.
We extend on this work by introducing multiple interacting RL agents as a preliminary analysis on modelling the complex interplay of socio-interactions between various stakeholders or nations.
arXiv Detail & Related papers (2024-10-09T13:21:50Z) - Evaluating Real-World Robot Manipulation Policies in Simulation [91.55267186958892]
Control and visual disparities between real and simulated environments are key challenges for reliable simulated evaluation.
We propose approaches for mitigating these gaps without needing to craft full-fidelity digital twins of real-world environments.
We create SIMPLER, a collection of simulated environments for manipulation policy evaluation on common real robot setups.
arXiv Detail & Related papers (2024-05-09T17:30:16Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind.
This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines.
arXiv Detail & Related papers (2024-01-23T18:59:43Z) - Can Reinforcement Learning support policy makers? A preliminary study
with Integrated Assessment Models [7.1307809008103735]
Integrated Assessment Models (IAMs) attempt to link main features of society and economy with the biosphere into one modelling framework.
This paper empirically demonstrates that modern Reinforcement Learning can be used to probe IAMs and explore the space of solutions in a more principled manner.
arXiv Detail & Related papers (2023-12-11T17:04:30Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning [48.667697255912614]
Mean-field reinforcement learning addresses the policy of a representative agent interacting with the infinite population of identical agents.
We propose Safe-M$3$-UCRL, the first model-based mean-field reinforcement learning algorithm that attains safe policies even in the case of unknown transitions.
Our algorithm effectively meets the demand in critical areas while ensuring service accessibility in regions with low demand.
arXiv Detail & Related papers (2023-06-29T15:57:07Z) - Uncertainty Aware System Identification with Universal Policies [45.44896435487879]
Sim2real transfer is concerned with transferring policies trained in simulation to potentially noisy real world environments.
We propose Uncertainty-aware policy search (UncAPS), where we use Universal Policy Network (UPN) to store simulation-trained task-specific policies.
We then employ robust Bayesian optimisation to craft robust policies for the given environment by combining relevant UPN policies in a DR like fashion.
arXiv Detail & Related papers (2022-02-11T18:27:23Z) - Building a Foundation for Data-Driven, Interpretable, and Robust Policy
Design using the AI Economist [67.08543240320756]
We show that the AI Economist framework enables effective, flexible, and interpretable policy design using two-level reinforcement learning and data-driven simulations.
We find that log-linear policies trained using RL significantly improve social welfare, based on both public health and economic outcomes, compared to past outcomes.
arXiv Detail & Related papers (2021-08-06T01:30:41Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
We consider the task of training a policy that maximizes reward while minimizing disclosure of certain sensitive state variables through the actions.
We solve this problem by introducing a regularizer based on the mutual information between the sensitive state and the actions.
We develop a model-based estimator for optimization of privacy-constrained policies.
arXiv Detail & Related papers (2020-12-30T03:22:35Z) - HECT: High-Dimensional Ensemble Consistency Testing for Climate Models [1.7587442088965226]
Climate models play a crucial role in understanding the effect of environmental changes on climate to help mitigate climate risks and inform decisions.
Large global climate models such as the Community Earth System Model (CESM), are very complex with millions of lines of code describing interactions of the atmosphere, land, oceans, and ice.
Our work uses probabilistics like tree-based algorithms and deep neural networks to perform a statistically rigorous goodness-of-fit test of high-dimensional and man-made data.
arXiv Detail & Related papers (2020-10-08T15:16:16Z) - Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field
Control/Game in Continuous Time [109.06623773924737]
We study the policy gradient method for the linear-quadratic mean-field control and game.
We show that it converges to the optimal solution at a linear rate, which is verified by a synthetic simulation.
arXiv Detail & Related papers (2020-08-16T06:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.