論文の概要: A Numerical Gradient Inversion Attack in Variational Quantum Neural-Networks
- arxiv url: http://arxiv.org/abs/2504.12806v1
- Date: Thu, 17 Apr 2025 10:12:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:39:09.862358
- Title: A Numerical Gradient Inversion Attack in Variational Quantum Neural-Networks
- Title(参考訳): 変分量子ニューラルネットにおけるグラディエント・インバージョン・アタック
- Authors: Georgios Papadopoulos, Shaltiel Eloul, Yash Satsangi, Jamie Heredge, Niraj Kumar, Chun-Fu Chen, Marco Pistoia,
- Abstract要約: 変分量子ニューラルネットワーク(VQNN)のロスランドスケープは、量子ビットの増加とともに指数関数的に増大する局所的ミニマによって特徴づけられる。
本稿では,学習可能なVQNNの勾配から入力学習,実世界,実践的データを再構築する数値計算手法を提案する。
- 参考スコア(独自算出の注目度): 4.086403209504347
- License:
- Abstract: The loss landscape of Variational Quantum Neural Networks (VQNNs) is characterized by local minima that grow exponentially with increasing qubits. Because of this, it is more challenging to recover information from model gradients during training compared to classical Neural Networks (NNs). In this paper we present a numerical scheme that successfully reconstructs input training, real-world, practical data from trainable VQNNs' gradients. Our scheme is based on gradient inversion that works by combining gradients estimation with the finite difference method and adaptive low-pass filtering. The scheme is further optimized with Kalman filter to obtain efficient convergence. Our experiments show that our algorithm can invert even batch-trained data, given the VQNN model is sufficiently over-parameterized.
- Abstract(参考訳): 変分量子ニューラルネットワーク(VQNN)のロスランドスケープは、量子ビットの増加とともに指数関数的に増大する局所的ミニマによって特徴づけられる。
このため、従来のニューラルネットワーク(NN)と比較して、トレーニング中にモデル勾配から情報を復元することはより困難である。
本稿では,学習可能なVQNNの勾配から入力学習,実世界,実践的データを再構築する数値計算手法を提案する。
本手法は、勾配推定と有限差分法と適応低域フィルタを組み合わせた勾配インバージョンに基づく。
このスキームは、効率的な収束を得るためにカルマンフィルタによりさらに最適化される。
我々の実験は,VQNNモデルが十分に過パラメータ化されていることを考えると,我々のアルゴリズムがバッチ学習データにも逆変換可能であることを示す。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Converting Artificial Neural Networks to Spiking Neural Networks via
Parameter Calibration [21.117214351356765]
スパイキングニューラルネットワーク(SNN)は、次世代ニューラルネットワークの1つとして認識されている。
本研究では、ANNの重みをSNNにコピー&ペーストするだけで、必然的にアクティベーションミスマッチが発生することを論じる。
そこで本研究では,アクティベーションミスマッチを最小限に抑えるため,パラメータの調整を行う層ワイドパラメータキャリブレーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T18:22:09Z) - Navigating Local Minima in Quantized Spiking Neural Networks [3.1351527202068445]
深層学習(DL)アルゴリズムの超効率的な実装においては,スパイキングと量子ニューラルネットワーク(NN)が極めて重要になっている。
これらのネットワークは、ハードしきい値を適用する際の勾配信号の欠如により、エラーのバックプロパゲーションを使用してトレーニングする際の課題に直面している。
本稿では,コサインアニールLRスケジュールと重み非依存適応モーメント推定を併用したシステム評価を行った。
論文 参考訳(メタデータ) (2022-02-15T06:42:25Z) - Backward Gradient Normalization in Deep Neural Networks [68.8204255655161]
ニューラルネットワークトレーニングにおける勾配正規化のための新しい手法を提案する。
勾配は、ネットワークアーキテクチャ内の特定の点で導入された正規化レイヤを使用して、後方通過中に再スケールされる。
非常に深いニューラルネットワークを用いたテストの結果、新しい手法が勾配ノルムを効果的に制御できることが示されている。
論文 参考訳(メタデータ) (2021-06-17T13:24:43Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
ディープニューラルネットワーク(DNN)は通常、勾配降下による最適化に数千のイテレーションを要します。
非次最適化に基づく新しい多様体ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-15T06:39:13Z) - A Novel Neural Network Training Framework with Data Assimilation [2.948167339160823]
勾配計算を避けるため,データ同化に基づく勾配なし学習フレームワークを提案する。
その結果,提案手法は勾配法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-06T11:12:23Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
勾配の通信は、コンピュータビジョンアプリケーションで複数のデバイスでディープニューラルネットワークをトレーニングするのに費用がかかる。
本研究は,textbfANY勾配分布に対する二値および多値勾配量子化の最適条件を導出する。
最適条件に基づいて, 偏差BinGradと非偏差ORQの2値勾配量子化と多値勾配量子化の2つの新しい量子化手法を開発した。
論文 参考訳(メタデータ) (2020-02-25T18:28:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。