論文の概要: UncAD: Towards Safe End-to-end Autonomous Driving via Online Map Uncertainty
- arxiv url: http://arxiv.org/abs/2504.12826v1
- Date: Thu, 17 Apr 2025 10:40:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:35:44.000593
- Title: UncAD: Towards Safe End-to-end Autonomous Driving via Online Map Uncertainty
- Title(参考訳): UncAD: オンラインマップの不確実性による安全なエンドツーエンド自動運転を目指す
- Authors: Pengxuan Yang, Yupeng Zheng, Qichao Zhang, Kefei Zhu, Zebin Xing, Qiao Lin, Yun-Fu Liu, Zhiguo Su, Dongbin Zhao,
- Abstract要約: 自動運転の安全性を高めるための新しいパラダイムUncADを提案する。
UncADは知覚モジュール内のオンラインマップの不確実性を推定する。
そして、不確実性を利用して、運動予測と計画モジュールを誘導し、マルチモーダル軌道を生成する。
- 参考スコア(独自算出の注目度): 8.379819845788564
- License:
- Abstract: End-to-end autonomous driving aims to produce planning trajectories from raw sensors directly. Currently, most approaches integrate perception, prediction, and planning modules into a fully differentiable network, promising great scalability. However, these methods typically rely on deterministic modeling of online maps in the perception module for guiding or constraining vehicle planning, which may incorporate erroneous perception information and further compromise planning safety. To address this issue, we delve into the importance of online map uncertainty for enhancing autonomous driving safety and propose a novel paradigm named UncAD. Specifically, UncAD first estimates the uncertainty of the online map in the perception module. It then leverages the uncertainty to guide motion prediction and planning modules to produce multi-modal trajectories. Finally, to achieve safer autonomous driving, UncAD proposes an uncertainty-collision-aware planning selection strategy according to the online map uncertainty to evaluate and select the best trajectory. In this study, we incorporate UncAD into various state-of-the-art (SOTA) end-to-end methods. Experiments on the nuScenes dataset show that integrating UncAD, with only a 1.9% increase in parameters, can reduce collision rates by up to 26% and drivable area conflict rate by up to 42%. Codes, pre-trained models, and demo videos can be accessed at https://github.com/pengxuanyang/UncAD.
- Abstract(参考訳): エンドツーエンドの自動運転は、生のセンサーから計画軌道を直接生成することを目的としている。
現在、ほとんどのアプローチは認識、予測、計画モジュールを完全に微分可能なネットワークに統合し、優れたスケーラビリティを約束しています。
しかし、これらの手法は通常、車両計画の誘導や制約を行うための知覚モジュール内のオンラインマップの決定論的モデリングに依存しており、誤った知覚情報を組み込んだり、さらに計画の安全性を損なう可能性がある。
この問題に対処するため、自律運転安全性を高めるためのオンラインマップの不確実性の重要性を探求し、UncADという新しいパラダイムを提案する。
具体的には、UncADはまず知覚モジュール内のオンラインマップの不確実性を推定する。
そして、不確実性を利用して、運動予測と計画モジュールを誘導し、マルチモーダル軌道を生成する。
最後に、より安全な自動運転を実現するために、UncADは、オンラインマップの不確実性に応じて、不確実性を考慮した計画選択戦略を提案し、最良の軌道を評価し、選択する。
本研究では,UncADを様々な最先端(SOTA)のエンド・ツー・エンド・メソッドに組み込む。
nuScenesデータセットの実験によると、UncADの統合はパラメータが1.9%しか増加せず、衝突率を最大26%、乾燥可能な領域衝突率を最大42%削減できる。
コード、事前訓練されたモデル、デモビデオはhttps://github.com/pengxuanyang/UncAD.comでアクセスできる。
関連論文リスト
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - Edge-Assisted ML-Aided Uncertainty-Aware Vehicle Collision Avoidance at Urban Intersections [12.812518632907771]
都市横断路におけるプリエンプティブ衝突を検出する新しい枠組みを提案する。
5Gネットワークのマルチアクセスエッジコンピューティングプラットフォームを利用する。
論文 参考訳(メタデータ) (2024-04-22T18:45:40Z) - Automatic driving lane change safety prediction model based on LSTM [3.8749946206111603]
LSTMネットワークに基づく軌道予測法は、長い時間領域における軌道予測において明らかな利点がある。
その結果、従来のモデルベース手法と比較して、LSTMネットワークに基づく軌道予測法は、長い時間領域における軌道予測において明らかな利点があることが示された。
論文 参考訳(メタデータ) (2024-02-28T12:34:04Z) - Model Checking for Closed-Loop Robot Reactive Planning [0.0]
モデル検査を用いて、ディファレンシャルドライブホイールロボットの多段階計画を作成することにより、即時危険を回避できることを示す。
簡単な生物エージェントのエゴセントリックな反応を反映した,小型で汎用的なモデル検査アルゴリズムを用いて,リアルタイムで計画を生成する。
論文 参考訳(メタデータ) (2023-11-16T11:02:29Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
本研究では、不確実性モデリングと知識統合の駆動による自動運転の注意を予測できる教師なし手法を提案する。
結果は、完全に教師された最先端のアプローチと比較して、同等またはさらに印象的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-03-17T00:28:33Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
我々は、自動運転車と他の道路エージェントの両方の将来の軌道にまたがる分布について提案する。
推論中は、安全性と予測確率を考慮したコストを最小限に抑える計画軌道を選択する。
都市部の公道上での自動運転車の展開に成功し、快適さを損なうことなく安全に運転できることを確認しました。
論文 参考訳(メタデータ) (2022-11-03T20:16:24Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
マルチエージェント設定における予測問題に対処するために,計画インフォームド・トラジェクトリ予測(PiP)を提案する。
本手法は,エゴカーの計画により予測過程を通知することにより,高速道路のデータセット上でのマルチエージェント予測の最先端性能を実現する。
論文 参考訳(メタデータ) (2020-03-25T16:09:54Z) - Integrating Deep Reinforcement Learning with Model-based Path Planners
for Automated Driving [0.0]
本稿では、経路計画管を視覚ベースのDRLフレームワークに統合するためのハイブリッドアプローチを提案する。
要約すると、DRLエージェントは、パスプランナーのウェイポイントをできるだけ近くに追従するように訓練される。
実験の結果,提案手法は経路を計画し,ランダムに選択した起点-終点間を移動可能であることがわかった。
論文 参考訳(メタデータ) (2020-02-02T17:10:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。