UncAD: Towards Safe End-to-end Autonomous Driving via Online Map Uncertainty
- URL: http://arxiv.org/abs/2504.12826v1
- Date: Thu, 17 Apr 2025 10:40:36 GMT
- Title: UncAD: Towards Safe End-to-end Autonomous Driving via Online Map Uncertainty
- Authors: Pengxuan Yang, Yupeng Zheng, Qichao Zhang, Kefei Zhu, Zebin Xing, Qiao Lin, Yun-Fu Liu, Zhiguo Su, Dongbin Zhao,
- Abstract summary: We propose a novel paradigm named UncAD to enhance autonomous driving safety.<n>UncAD estimates the uncertainty of the online map in the perception module.<n>It then leverages the uncertainty to guide motion prediction and planning modules to produce multi-modal trajectories.
- Score: 8.379819845788564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end autonomous driving aims to produce planning trajectories from raw sensors directly. Currently, most approaches integrate perception, prediction, and planning modules into a fully differentiable network, promising great scalability. However, these methods typically rely on deterministic modeling of online maps in the perception module for guiding or constraining vehicle planning, which may incorporate erroneous perception information and further compromise planning safety. To address this issue, we delve into the importance of online map uncertainty for enhancing autonomous driving safety and propose a novel paradigm named UncAD. Specifically, UncAD first estimates the uncertainty of the online map in the perception module. It then leverages the uncertainty to guide motion prediction and planning modules to produce multi-modal trajectories. Finally, to achieve safer autonomous driving, UncAD proposes an uncertainty-collision-aware planning selection strategy according to the online map uncertainty to evaluate and select the best trajectory. In this study, we incorporate UncAD into various state-of-the-art (SOTA) end-to-end methods. Experiments on the nuScenes dataset show that integrating UncAD, with only a 1.9% increase in parameters, can reduce collision rates by up to 26% and drivable area conflict rate by up to 42%. Codes, pre-trained models, and demo videos can be accessed at https://github.com/pengxuanyang/UncAD.
Related papers
- Centaur: Robust End-to-End Autonomous Driving with Test-Time Training [84.78837437133234]
We propose Centaur, which updates a planner's behavior via test-time training without relying on hand-engineered rules or cost functions.
We develop a novel uncertainty measure, called Cluster Entropy, which is simple, interpretable, and compatible with state-of-the-art planning algorithms.
arXiv Detail & Related papers (2025-03-14T17:59:41Z) - Minds on the Move: Decoding Trajectory Prediction in Autonomous Driving with Cognitive Insights [18.92479778025183]
In driving scenarios, a vehicle's trajectory is determined by the decision-making process of human drivers.<n>Previous models fail to capture the true intentions of human drivers, leading to suboptimal performance in long-term trajectory prediction.<n>We introduce a Cognitive-Informed Transformer (CITF) that incorporates a cognitive concept, Perceived Safety, to interpret drivers' decision-making mechanisms.
arXiv Detail & Related papers (2025-02-27T13:43:17Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Automatic driving lane change safety prediction model based on LSTM [3.8749946206111603]
The trajectory prediction method based on LSTM network has obvious advantages in predicting the trajectory in the long time domain.
The research results show that compared with the traditional model-based method, the trajectory prediction method based on LSTM network has obvious advantages in predicting the trajectory in the long time domain.
arXiv Detail & Related papers (2024-02-28T12:34:04Z) - Model Checking for Closed-Loop Robot Reactive Planning [0.0]
We show how model checking can be used to create multistep plans for a differential drive wheeled robot so that it can avoid immediate danger.
Using a small, purpose built model checking algorithm in situ we generate plans in real-time in a way that reflects the egocentric reactive response of simple biological agents.
arXiv Detail & Related papers (2023-11-16T11:02:29Z) - The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review [43.30610493968783]
We review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction.
We discuss the implications, strengths, and limitations of different integration principles.
arXiv Detail & Related papers (2023-08-10T17:53:03Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
We propose an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration.
Results show equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2023-03-17T00:28:33Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
We propose a distribution over multiple future trajectories for both the self-driving vehicle and other road agents.
During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities.
We successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort.
arXiv Detail & Related papers (2022-11-03T20:16:24Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Integrating Deep Reinforcement Learning with Model-based Path Planners
for Automated Driving [0.0]
We propose a hybrid approach for integrating a path planning pipe into a vision based DRL framework.
In summary, the DRL agent is trained to follow the path planner's waypoints as close as possible.
Experimental results show that the proposed method can plan its path and navigate between randomly chosen origin-destination points.
arXiv Detail & Related papers (2020-02-02T17:10:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.