Hopf Exceptional Points
- URL: http://arxiv.org/abs/2504.13012v2
- Date: Thu, 01 May 2025 00:12:22 GMT
- Title: Hopf Exceptional Points
- Authors: Tsuneya Yoshida, Emil J. Bergholtz, Tomáš Bzdušek,
- Abstract summary: We introduce a class of Hopf exceptional points that are protected by the Hopf invariants.<n>Based on higher homotopy groups of spheres, we predict the existence of multifold HEPs and symmetry-protected HEPs with non-Hermitian topology.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exceptional points at which eigenvalues and eigenvectors of non-Hermitian matrices coalesce are ubiquitous in the description of a wide range of platforms from photonic or mechanical metamaterials to open quantum systems. Here, we introduce a class of Hopf exceptional points (HEPs) that are protected by the Hopf invariants (including the higher-dimensional generalizations) and which exhibit phenomenology sharply distinct from conventional exceptional points. Saliently, owing to their $\mathbb{Z}_2$ topological invariant related to the Witten anomaly, three-fold HEPs and symmetry-protected five-fold HEPs act as their own ``antiparticles". Furthermore, based on higher homotopy groups of spheres, we predict the existence of multifold HEPs and symmetry-protected HEPs with non-Hermitian topology captured by a range of finite groups (such as $\mathbb{Z}_3$, $\mathbb{Z}_{12}$, or $\mathbb{Z}_{24}$) beyond the periodic table of Bernard-LeClair symmetry classes.
Related papers
- Abelian Spectral Topology of Multifold Exceptional Points [0.0]
We revisit the classification of EP$n$s in generic systems and systems with local symmetries.<n>Our work reveals the mathematical foundations on which the topological nature of EP$n$s resides.
arXiv Detail & Related papers (2024-12-19T19:00:00Z) - Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)
Our invariant is invariant under unitary and similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Origin of Robust $\mathbb{Z}_2$ Topological Phases in Stacked Hermitian Systems: Non-Hermitian Level Repulsion [0.8739101659113157]
Quantum spin Hall insulators, which possess a non-trivial $mathbbZ$ topological phase, have attracted great attention for two decades.<n>It is generally believed that when an even number of layers of the quantum spin Hall insulators are stacked, the $mathbbZ$ topological phase becomes unstable due to $mathbbZ$ nature.<n>We provide a systematic understanding that the robustness generally originates from level repulsion in the corresponding non-Hermitian system derived from Hermitization.
arXiv Detail & Related papers (2024-07-30T12:02:21Z) - Non-Abelian Hopf-Euler insulators [0.0]
A class of non-Abelian topological insulators in three dimensions carry a single bulk Hopf index protected by insulator ($mathcalPT$) inversion symmetry.
Such systems naturally realize nodal structures in the three-dimensional Brillou zonein, providing a physical manifestation of the linking number described by the Hopf invariant.
Our findings pave the way for novel experimental realizations of real-space quantum-geometry.
arXiv Detail & Related papers (2024-05-27T16:07:47Z) - Cluster state as a non-invertible symmetry protected topological phase [0.0]
We show that the standard 1+1d $mathbbZ tensortimes mathbbZ$ cluster model has a non-invertible global symmetry.
We identify the edge modes and the local projective algebras at the interfaces between these non-invertible SPT phases.
arXiv Detail & Related papers (2024-04-01T18:00:00Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Exceptional entanglement in non-Hermitian fermionic models [1.8853792538756093]
Exotic singular objects, known as exceptional points, are ubiquitous in non-Hermitian physics.
From the entanglement spectrum, zero-energy exceptional modes are found to be distinct from normal zero modes or topological boundary modes.
arXiv Detail & Related papers (2023-04-13T12:40:11Z) - Towards a complete classification of non-chiral topological phases in 2D fermion systems [29.799668287091883]
We argue that all non-chiral fermionic topological phases in 2+1D are characterized by a set of tensors $(Nij_k,Fij_k,Fijm,alphabeta_kln,chidelta,n_i,d_i)$.
Several examples with q-type anyon excitations are discussed, including the Fermionic topological phase from Tambara-gami category for $mathbbZ_2N$.
arXiv Detail & Related papers (2021-12-12T03:00:54Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Finite-Function-Encoding Quantum States [52.77024349608834]
We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions.
We investigate some of their structural properties.
arXiv Detail & Related papers (2020-12-01T13:53:23Z) - SU$(3)_1$ Chiral Spin Liquid on the Square Lattice: a View from
Symmetric PEPS [55.41644538483948]
Quantum spin liquids can be faithfully represented and efficiently characterized within the framework of Projectedangled Pair States (PEPS)
Characteristic features are revealed by the entanglement spectrum (ES) on an infinitely long cylinder.
Special features in the ES are shown to be in correspondence with bulk anyonic correlations, indicating a fine structure in the holographic bulk-edge correspondence.
arXiv Detail & Related papers (2019-12-31T16:30:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.