論文の概要: Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification
- arxiv url: http://arxiv.org/abs/2504.13111v1
- Date: Thu, 17 Apr 2025 17:24:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:35:21.888773
- Title: Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification
- Title(参考訳): 規則規則付きヘテロセダスティックディープ分類による不確実性認識軌道予測
- Authors: Kumar Manas, Christian Schlauch, Adrian Paschke, Christian Wirth, Nadja Klein,
- Abstract要約: ShiFT (Spectral Heteroscedastic Informed Forecasting for Trajectories) は、よく校正された不確実性モデリングと情報前処理を組み合わせた新しいフレームワークである。
我々のモデルは、本質的に不確実性が高い交差点のような複雑なシナリオで優れている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep learning-based trajectory prediction models have demonstrated promising capabilities in capturing complex interactions. However, their out-of-distribution generalization remains a significant challenge, particularly due to unbalanced data and a lack of enough data and diversity to ensure robustness and calibration. To address this, we propose SHIFT (Spectral Heteroscedastic Informed Forecasting for Trajectories), a novel framework that uniquely combines well-calibrated uncertainty modeling with informative priors derived through automated rule extraction. SHIFT reformulates trajectory prediction as a classification task and employs heteroscedastic spectral-normalized Gaussian processes to effectively disentangle epistemic and aleatoric uncertainties. We learn informative priors from training labels, which are automatically generated from natural language driving rules, such as stop rules and drivability constraints, using a retrieval-augmented generation framework powered by a large language model. Extensive evaluations over the nuScenes dataset, including challenging low-data and cross-location scenarios, demonstrate that SHIFT outperforms state-of-the-art methods, achieving substantial gains in uncertainty calibration and displacement metrics. In particular, our model excels in complex scenarios, such as intersections, where uncertainty is inherently higher. Project page: https://kumarmanas.github.io/SHIFT/.
- Abstract(参考訳): 深層学習に基づく軌道予測モデルは、複雑な相互作用をキャプチャする有望な能力を実証している。
しかし、そのアウト・オブ・ディストリビューションの一般化は、特に不均衡なデータと、ロバストさとキャリブレーションを確保するのに十分なデータと多様性が不足しているため、大きな課題である。
そこで本研究では,よく校正された不確実性モデリングと,自動ルール抽出によって導出される情報的事前情報とを一意に組み合わせた新しいフレームワークShiFTを提案する。
ShiFTは、軌道予測を分類タスクとして再定義し、ヘテロセダスティックスペクトル正規化ガウス法を用いて、疫学とアレタリック不確実性を効果的に解き放つ。
我々は,大規模言語モデルを利用した検索強化生成フレームワークを用いて,停止規則や乾燥性制約などの自然言語駆動ルールから自動生成される学習ラベルから情報的先行情報を学習する。
nuScenesデータセットに対する大規模な評価は、低データとクロスロケーションのシナリオに挑戦するなど、ShiFTが最先端の手法より優れ、不確実性校正と変位のメトリクスが大幅に向上していることを示している。
特に、我々のモデルは、本質的に不確実性が高い交差点のような複雑なシナリオで優れている。
プロジェクトページ:https://kumarmanas.github.io/SHIFT/。
関連論文リスト
- Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
本稿では,ランダムラベルノイズによる交換性からの偏差を効率的に処理できる適応型共形推論手法を提案する。
本手法は,合成および実データに対して,その有効性を示す広範囲な数値実験により検証する。
論文 参考訳(メタデータ) (2025-01-29T23:55:23Z) - Federated Smoothing Proximal Gradient for Quantile Regression with Non-Convex Penalties [3.269165283595478]
IoT(Internet-of-Things)の分散センサーは、大量のスパースデータを生成する。
本稿では, 滑らか化機構をそのビューに統合し, 精度と計算速度を両立させる, 結合型滑らか化近位勾配(G)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:50:19Z) - The Decaying Missing-at-Random Framework: Doubly Robust Causal Inference
with Partially Labeled Data [10.021381302215062]
現実のシナリオでは、データ収集の制限によって部分的にラベル付けされたデータセットが生成されることが多く、信頼性の高い因果推論の描画が困難になる。
半パラメトリック(SS)や欠落したデータ文学における従来のアプローチは、これらの複雑さを適切に扱えないため、偏りのある見積もりにつながる可能性がある。
このフレームワークは、高次元設定における欠落した結果に対処し、選択バイアスを考慮に入れます。
論文 参考訳(メタデータ) (2023-05-22T07:37:12Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
データ駆動型ビジュアルオドメトリー(VO)は、自律エッジロボティクスにとって重要なサブルーチンである。
昆虫スケールドローンや外科ロボットのような最先端ロボットデバイスは、VOの予測の不確実性を推定する計算的に効率的な枠組みを欠いている。
本稿では,共形推論(CI)を利用してVOの不確実な帯域を抽出する,新しい,軽量で統計的に堅牢なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T20:37:55Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Precise Statistical Analysis of Classification Accuracies for
Adversarial Training [43.25761725062367]
この問題を治療するために、近年、様々な敵の訓練手順が提案されている。
我々は,逆向きに訓練されたミニマックスモデルの標準とロバストな精度を正確に評価する。
論文 参考訳(メタデータ) (2020-10-21T18:00:53Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。