論文の概要: Predicting BVD Re-emergence in Irish Cattle From Highly Imbalanced Herd-Level Data Using Machine Learning Algorithms
- arxiv url: http://arxiv.org/abs/2504.13116v1
- Date: Thu, 17 Apr 2025 17:33:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:35:20.858012
- Title: Predicting BVD Re-emergence in Irish Cattle From Highly Imbalanced Herd-Level Data Using Machine Learning Algorithms
- Title(参考訳): 機械学習アルゴリズムを用いた高不均衡ハードレベルデータからのアイルランド牛のBVD再浸出予測
- Authors: Niamh Mimnagh, Andrew Parnell, Conor McAloon, Jaden Carlson, Maria Guelbenzu, Jonas Brock, Damien Barrett, Guy McGrath, Jamie Tratalos, Rafael Moral,
- Abstract要約: Bovine Viral Diarrhoea (BVD) はアイルランドにおける根絶プログラムの成功の焦点となっている。
国家がBVDの自由に向かって進むにつれ、標的監視のための予測モデルの開発がますます重要になっている。
我々は,高度に不均衡な群集データを用いて,BVD陽性群を予測するための機械学習アルゴリズムの性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Bovine Viral Diarrhoea (BVD) has been the focus of a successful eradication programme in Ireland, with the herd-level prevalence declining from 11.3% in 2013 to just 0.2% in 2023. As the country moves toward BVD freedom, the development of predictive models for targeted surveillance becomes increasingly important to mitigate the risk of disease re-emergence. In this study, we evaluate the performance of a range of machine learning algorithms, including binary classification and anomaly detection techniques, for predicting BVD-positive herds using highly imbalanced herd-level data. We conduct an extensive simulation study to assess model performance across varying sample sizes and class imbalance ratios, incorporating resampling, class weighting, and appropriate evaluation metrics (sensitivity, positive predictive value, F1-score and AUC values). Random forests and XGBoost models consistently outperformed other methods, with the random forest model achieving the highest sensitivity and AUC across scenarios, including real-world prediction of 2023 herd status, correctly identifying 219 of 250 positive herds while halving the number of herds that require compared to a blanket-testing strategy.
- Abstract(参考訳): BVD(Bowvine Viral Diarrhoea)は、2013年の11.3%から2023年のわずか0.2%へと減少し、アイルランドにおける根絶プログラムの成功の焦点となっている。
我が国がBVDの自由に向かって進むにつれ、予防的監視のための予測モデルの開発が、病気の再発リスクを軽減するためにますます重要になっている。
本研究では,二分分類や異常検出を含む機械学習アルゴリズムの性能評価を行い,高度に不均衡な群集データを用いてBVD陽性群を予測した。
我々は,サンプルサイズやクラス不均衡率の異なるモデル性能を評価するために,サンプルのリサンプリング,クラス重み付け,適切な評価指標(感度,正の予測値,F1スコア,AUC値)を組み込んだ広範囲なシミュレーション研究を行った。
ランダム・フォレストとXGBoostのモデルは、ランダム・フォレスト・モデルが2023年の群れ状態の現実的な予測や250の群れのうち219の正の群れを正確に識別するなど、シナリオにわたって最高の感度とAUCを達成するなど、他の手法よりも一貫して優れていた。
関連論文リスト
- Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
本研究では, 育種試験におけるサツマイモクローンの選択プロセスの向上を目的とした, 機械学習アルゴリズムの適用について検討する。
本研究は, 高収率, 耐病性, 耐気候性ポテト品種を効率的に同定することの課題に対処する。
論文 参考訳(メタデータ) (2024-04-04T00:49:05Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Identifying and mitigating bias in algorithms used to manage patients in
a pandemic [4.756860520861679]
現実のデータセットを使用して、新型コロナウイルスの死亡率、人工呼吸器の状態、入院状態を予測するために、ロジスティック回帰モデルが作成された。
モデルではバイアス試験の回数が57%減少した。
キャリブレーション後, 予測モデルの平均感度は0.527から0.955に増加した。
論文 参考訳(メタデータ) (2021-10-30T21:10:56Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
我々は、新型コロナウイルス陽性の米国の患者の大規模な(110ドル以上)コホートでの入院を予測するために、さまざまなAIモデルを開発した。
高いデータアンバランスにもかかわらず、モデルは平均精度0.96-0.98 (0.75-0.85)、リコール0.96-0.98 (0.74-0.85)、F_score097-0.98 (0.79-0.83)に達する。
論文 参考訳(メタデータ) (2021-10-28T10:23:38Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives
for Brazil [3.0711362702464675]
新型コロナウイルス(COVID-19)は、今日までの最初の通知以来、何百万人もの人に感染する新興の病気だ。
本稿では、自己回帰統合移動平均(ARIMA)、キュビスト(CUBIST)、ランダムフォレスト(RF)、リッジ回帰(RIDGE)、スタックングアンサンブル学習を評価する。
開発されたモデルは正確な予測を生成でき、それぞれ0.87%から3.51%、1.02%から5.63%、0.95%から6.90%の誤差を発生させる。
論文 参考訳(メタデータ) (2020-07-21T17:58:58Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Forecasting the Spread of Covid-19 Under Control Scenarios Using LSTM
and Dynamic Behavioral Models [2.11622808613962]
本研究では,Long Short-term memory (LSTM)人工リカレントニューラルネットワークと動的行動モデルを組み合わせた新しいハイブリッドモデルを提案する。
提案モデルでは, 最上位10か国, オーストラリアにおいて, 死亡率の予測精度を高めるために, 複数因子の効果を考察した。
論文 参考訳(メタデータ) (2020-05-24T10:43:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。