論文の概要: Readable Twins of Unreadable Models
- arxiv url: http://arxiv.org/abs/2504.13150v1
- Date: Thu, 17 Apr 2025 17:55:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:34.801639
- Title: Readable Twins of Unreadable Models
- Title(参考訳): 可読性モデルにおける可読性双対
- Authors: Krzysztof Pancerz, Piotr Kulicki, Michał Kalisz, Andrzej Burda, Maciej Stanisławski, Jaromir Sarzyński,
- Abstract要約: 読めないディープラーニングモデルのための読みやすいツインを作るというアイデアを紹介します。
提案手法は,手書き数字の画像認識のためのディープラーニング分類モデルの例を示す。
- 参考スコア(独自算出の注目度): 0.07916635054977067
- License:
- Abstract: Creating responsible artificial intelligence (AI) systems is an important issue in contemporary research and development of works on AI. One of the characteristics of responsible AI systems is their explainability. In the paper, we are interested in explainable deep learning (XDL) systems. On the basis of the creation of digital twins of physical objects, we introduce the idea of creating readable twins (in the form of imprecise information flow models) for unreadable deep learning models. The complete procedure for switching from the deep learning model (DLM) to the imprecise information flow model (IIFM) is presented. The proposed approach is illustrated with an example of a deep learning classification model for image recognition of handwritten digits from the MNIST data set.
- Abstract(参考訳): 責任ある人工知能(AI)システムを作成することは、AIの研究と開発において重要な課題である。
責任あるAIシステムの特性の1つは、その説明可能性である。
本稿では,説明可能な深層学習(XDL)システムに関心がある。
物理オブジェクトのディジタルツインの作成に基づいて、読みやすい深層学習モデルのための読みやすいツイン(不正確な情報フローモデルという形で)を作成するというアイデアを導入する。
深層学習モデル(DLM)から不正確な情報フローモデル(IIFM)に切り替える完全な手順を示す。
提案手法は,MNISTデータセットから手書き桁を画像認識するためのディープラーニング分類モデルの例を示す。
関連論文リスト
- Fill in the blanks: Rethinking Interpretability in vision [0.0]
我々は、新しい視点から視覚モデルの説明可能性を再考し、トレーニング中にモデルが学習した一般的な入力構造を探索する。
標準的なビジョンデータセットと事前トレーニングされたモデルの実験は、一貫性のあるパターンを明らかにし、追加のモデルに依存しない説明可能性ツールとして解釈できる。
論文 参考訳(メタデータ) (2024-11-15T15:31:06Z) - Identifiable Causal Representation Learning: Unsupervised, Multi-View, and Multi-Environment [10.814585613336778]
因果表現学習は、機械学習のコアとなる強みと因果性を組み合わせることを目的としている。
この論文は、CRLが直接の監督なしに何が可能であるかを調査し、理論的基礎に寄与する。
論文 参考訳(メタデータ) (2024-06-19T09:14:40Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Representing Timed Automata and Timing Anomalies of Cyber-Physical
Production Systems in Knowledge Graphs [51.98400002538092]
本稿では,学習されたタイムドオートマトンとシステムに関する公式知識グラフを組み合わせることで,CPPSのモデルベース異常検出を改善することを目的とする。
モデルと検出された異常の両方を知識グラフに記述し、モデルと検出された異常をより容易に解釈できるようにする。
論文 参考訳(メタデータ) (2023-08-25T15:25:57Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Perception Visualization: Seeing Through the Eyes of a DNN [5.9557391359320375]
我々は、Grad-CAMのような現在の説明方法と本質的に異なる、新しい説明形式を開発する。
知覚可視化は、DNNが入力画像で知覚するものの視覚的表現を提供する。
ユーザスタディの結果から,認識の可視化が可能になった場合,人間がシステムの判断をよりよく理解し,予測できることが示される。
論文 参考訳(メタデータ) (2022-04-21T07:18:55Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - Algebraic Learning: Towards Interpretable Information Modeling [0.0]
この論文は、一般的な情報モデリングにおける解釈可能性の問題に対処し、問題を2つの範囲から緩和する試みである。
まず、問題指向の視点を用いて、興味深い数学的性質が自然に現れるモデリング実践に知識を取り入れる。
第二に、訓練されたモデルを考えると、基礎となるシステムに関するさらなる洞察を抽出するために様々な方法を適用することができる。
論文 参考訳(メタデータ) (2022-03-13T15:53:39Z) - Deep Learning Reproducibility and Explainable AI (XAI) [9.13755431537592]
ディープラーニング(DL)学習アルゴリズムの非決定性とそのニューラルネットワーク(NN)モデルの説明可能性への影響について検討した。
この問題について議論するため、2つの畳み込みニューラルネットワーク(CNN)をトレーニングし、その結果を比較した。
論文 参考訳(メタデータ) (2022-02-23T12:06:20Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。