論文の概要: Auto-FEDUS: Autoregressive Generative Modeling of Doppler Ultrasound Signals from Fetal Electrocardiograms
- arxiv url: http://arxiv.org/abs/2504.13233v1
- Date: Thu, 17 Apr 2025 15:25:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 20:46:10.914932
- Title: Auto-FEDUS: Autoregressive Generative Modeling of Doppler Ultrasound Signals from Fetal Electrocardiograms
- Title(参考訳): Auto-FEDUS:胎児心電図からの超音波ドプラ信号の自動回帰生成モデル
- Authors: Alireza Rafiei, Gari D. Clifford, Nasim Katebi,
- Abstract要約: 胎児心電図(FECG)信号を対応するDUS波形(Auto-FEDUS)にマッピングするための新しい自己回帰生成モデルを提案する。
拡張因果畳み込みに基づくニューラル・テンポラル・ネットワークを活用することで、このモデルは、信号内の短距離および長距離の依存関係を効果的にキャプチャし、生成されたデータの完全性を維持する。
クロスオブジェクト実験により、Auto-FEDUSは時間領域と周波数領域の両方で従来の生成アーキテクチャよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 3.1295375129864644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fetal health monitoring through one-dimensional Doppler ultrasound (DUS) signals offers a cost-effective and accessible approach that is increasingly gaining interest. Despite its potential, the development of machine learning based techniques to assess the health condition of mothers and fetuses using DUS signals remains limited. This scarcity is primarily due to the lack of extensive DUS datasets with a reliable reference for interpretation and data imbalance across different gestational ages. In response, we introduce a novel autoregressive generative model designed to map fetal electrocardiogram (FECG) signals to corresponding DUS waveforms (Auto-FEDUS). By leveraging a neural temporal network based on dilated causal convolutions that operate directly on the waveform level, the model effectively captures both short and long-range dependencies within the signals, preserving the integrity of generated data. Cross-subject experiments demonstrate that Auto-FEDUS outperforms conventional generative architectures across both time and frequency domain evaluations, producing DUS signals that closely resemble the morphology of their real counterparts. The realism of these synthesized signals was further gauged using a quality assessment model, which classified all as good quality, and a heart rate estimation model, which produced comparable results for generated and real data, with a Bland-Altman limit of 4.5 beats per minute. This advancement offers a promising solution for mitigating limited data availability and enhancing the training of DUS-based fetal models, making them more effective and generalizable.
- Abstract(参考訳): 1次元ドップラー超音波(DUS)信号による胎児の健康モニタリングは、コスト効率が高くアクセスしやすいアプローチを提供しており、ますます関心を集めている。
その可能性にもかかわらず、DUS信号を用いた母親や胎児の健康状態を評価する機械学習ベースの技術の開発は依然として限られている。
この不足は主に、異なる妊娠年齢における解釈とデータの不均衡に対する信頼性の高い参照を持つ、広範なDUSデータセットの欠如によるものである。
そこで本研究では,胎児心電図(FECG)信号を対応するDUS波形(Auto-FEDUS)にマッピングするための,新しい自己回帰生成モデルを提案する。
波形レベルで直接動作する拡張因果畳み込みに基づくニューラル・テンポラル・ネットワークを利用することで、このモデルは、信号内の短距離および長距離の依存関係を効果的に捕捉し、生成されたデータの完全性を維持する。
クロスオブジェクト実験により、Auto-FEDUSは時間領域評価と周波数領域評価の両方で従来の生成アーキテクチャよりも優れており、DUS信号は実際のドメインの形状によく似ていることが示されている。
これらの合成信号のリアリズムは、品質評価モデルを用いてさらに測定され、品質評価モデルは、すべての品質を分類し、心拍推定モデルは、生成データと実データに匹敵する結果を生成し、Bland-Altman制限は、毎分4.5ビートである。
この進歩は、限られたデータ可用性を緩和し、DUSベースの胎児モデルのトレーニングを強化し、より効果的で一般化可能な、有望なソリューションを提供する。
関連論文リスト
- Synthetic Time Series Data Generation for Healthcare Applications: A PCG Case Study [43.28613210217385]
我々は、PCGデータを生成するために、最先端の3つの生成モデルを採用し、比較する。
その結果,生成したPCGデータは元のデータセットによく似ていることがわかった。
今後の研究では、この手法をデータ拡張パイプラインに組み込んで、異常なPCG信号を心臓の大腿骨で合成する予定である。
論文 参考訳(メタデータ) (2024-12-17T18:07:40Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Improving self-supervised pretraining models for epileptic seizure
detection from EEG data [0.23624125155742057]
本稿では、時系列に基づく拡散畳み込みニューラルネットワーク(DCRNN)モデルの性能を高めるための様々な自己超越戦略を提案する。
自己超越事前訓練フェーズの学習重量は、モデルの予測能力を高めるために教師付きトレーニングフェーズに移行することができる。
論文 参考訳(メタデータ) (2022-06-28T17:15:49Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Forecasting adverse surgical events using self-supervised transfer
learning for physiological signals [7.262231066394781]
本稿では,PHASE という,伝送可能な埋め込み方式(時系列信号を予測機械学習モデルのための入力特徴に変換する方法)を提案する。
我々は,2つの手術室(OR)データセットと集中治療室(ICU)データセットの5万件以上の手術群について,分単位でPHASEを評価した。
1つのデータセットに埋め込みモデルを訓練し、信号を埋め込み、未知のデータに有害事象を予測する伝達学習環境において、PHASEは従来の手法に比べて計算コストの低い精度で予測精度を著しく向上させる。
論文 参考訳(メタデータ) (2020-02-12T02:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。