論文の概要: Forecasting adverse surgical events using self-supervised transfer
learning for physiological signals
- arxiv url: http://arxiv.org/abs/2002.04770v2
- Date: Thu, 21 Jan 2021 21:27:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 19:37:58.613560
- Title: Forecasting adverse surgical events using self-supervised transfer
learning for physiological signals
- Title(参考訳): 生理的信号に対する自己教師あり転送学習による手術事象の予測
- Authors: Hugh Chen, Scott Lundberg, Gabe Erion, Jerry H. Kim, Su-In Lee
- Abstract要約: 本稿では,PHASE という,伝送可能な埋め込み方式(時系列信号を予測機械学習モデルのための入力特徴に変換する方法)を提案する。
我々は,2つの手術室(OR)データセットと集中治療室(ICU)データセットの5万件以上の手術群について,分単位でPHASEを評価した。
1つのデータセットに埋め込みモデルを訓練し、信号を埋め込み、未知のデータに有害事象を予測する伝達学習環境において、PHASEは従来の手法に比べて計算コストの低い精度で予測精度を著しく向上させる。
- 参考スコア(独自算出の注目度): 7.262231066394781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hundreds of millions of surgical procedures take place annually across the
world, which generate a prevalent type of electronic health record (EHR) data
comprising time series physiological signals. Here, we present a transferable
embedding method (i.e., a method to transform time series signals into input
features for predictive machine learning models) named PHASE (PHysiologicAl
Signal Embeddings) that enables us to more accurately forecast adverse surgical
outcomes based on physiological signals. We evaluate PHASE on minute-by-minute
EHR data of more than 50,000 surgeries from two operating room (OR) datasets
and patient stays in an intensive care unit (ICU) dataset. PHASE outperforms
other state-of-the-art approaches, such as long-short term memory networks
trained on raw data and gradient boosted trees trained on handcrafted features,
in predicting five distinct outcomes: hypoxemia, hypocapnia, hypotension,
hypertension, and phenylephrine administration. In a transfer learning setting
where we train embedding models in one dataset then embed signals and predict
adverse events in unseen data, PHASE achieves significantly higher prediction
accuracy at lower computational cost compared to conventional approaches.
Finally, given the importance of understanding models in clinical applications
we demonstrate that PHASE is explainable and validate our predictive models
using local feature attribution methods.
- Abstract(参考訳): 毎年何百万もの外科手術が世界中で行われており、時系列の生理的信号を含む電子健康記録(EHR)データを生成する。
本稿では,時系列信号を予測機械学習モデルのための入力特徴に変換するトランスファー可能な埋め込み法であるphase (physiological signal embeddeds)を提案する。
我々は,2つの手術室(OR)データセットと集中治療室(ICU)データセットの5万件以上の手術群について,分単位でPHASEを評価した。
フェーズは、低酸素血症、低脳症、低血圧、高血圧、フェニルエフリン投与の5つの異なる結果を予測するために、生のデータと勾配で訓練された長期記憶ネットワークのような、最先端のアプローチよりも優れています。
1つのデータセットに埋め込みモデルを訓練し、信号を埋め込み、未知のデータに有害事象を予測する伝達学習環境において、PHASEは従来の手法に比べて計算コストの低い予測精度を著しく向上させる。
最後に, 臨床応用におけるモデル理解の重要性から, フェーズが説明可能であり, 局所的特徴帰属法を用いて予測モデルを検証することを実証する。
関連論文リスト
- Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
グラディエントブースティングモデル(GBM)は、トレーニング速度、解釈可能性、信頼性の点で、シーケンシャルモデルを上回った。
タイムリーな介入のために5分間の予測ウィンドウが選択された。
本研究は、トリアージを改善し、アラーム疲労を軽減するMLの可能性を強調した。
論文 参考訳(メタデータ) (2024-10-30T23:24:28Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Unsupervised pre-training of graph transformers on patient population
graphs [48.02011627390706]
異種臨床データを扱うグラフ変換器を用いたネットワークを提案する。
自己教師型, 移動学習環境において, 事前学習方式の利点を示す。
論文 参考訳(メタデータ) (2022-07-21T16:59:09Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
既存のアプローチは通常、てんかんの信号の高度にパーソナライズされた特性のために、患者固有の方法でモデルを訓練する。
患者固有のモデルは、蒸留された知識と追加のパーソナライズされたデータによって得られる。
提案手法を用いて,CHB-MIT sEEGデータベース上で5つの最先端の発作予測法を訓練する。
論文 参考訳(メタデータ) (2022-02-25T10:30:29Z) - Sequential Diagnosis Prediction with Transformer and Ontological
Representation [35.88195694025553]
本稿では,患者が訪問する時間スタンプと滞在時間との間に不規則な間隔を対応させるSETORと呼ばれる,エンドツーエンドの頑健なトランスフォーマーモデルを提案する。
2つの実世界の医療データセットで実施された実験により、シーケンシャルな診断予測モデルSETORは、従来の最先端のアプローチよりも優れた予測結果が得られることが示された。
論文 参考訳(メタデータ) (2021-09-07T13:09:55Z) - Synthesizing time-series wound prognosis factors from electronic medical
records using generative adversarial networks [0.0]
創傷予後因子を合成するためにgans(time series medical generative adversarial networks)を開発した。
条件付きトレーニング戦略は, 癒しや非癒しの観点から, 訓練の強化と分類データの生成に活用された。
論文 参考訳(メタデータ) (2021-05-03T20:26:48Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
うつ病の予測のために,ERHシーケンス上で双方向の表現学習を行うための時間的深層学習モデルを提案する。
このモデルでは, 曲線(PRAUC)下において, 最良ベースラインモデルと比較して, 抑うつ予測において0.70から0.76まで, 精度・リコール面積の最大値が得られた。
論文 参考訳(メタデータ) (2020-09-26T17:56:37Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。