論文の概要: Dynamic Memory-enhanced Transformer for Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2504.13242v1
- Date: Thu, 17 Apr 2025 17:43:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 20:41:44.024866
- Title: Dynamic Memory-enhanced Transformer for Hyperspectral Image Classification
- Title(参考訳): ハイパースペクトル画像分類のための動的メモリ強調変換器
- Authors: Muhammad Ahmad, Manuel Mazzara, Salvatore Distefano, Adil Mehmood Khan,
- Abstract要約: ハイパースペクトル画像(HSI)分類は、複雑な空間スペクトル相関のため、依然として困難な課題である。
既存のトランスモデルは、長距離依存を捉えるのに優れているが、情報冗長性と注意力の非効率さに悩まされることが多い。
MemFormerは、動的メモリモジュールを反復的に洗練するメモリ強化型マルチヘッドアテンションメカニズムを導入している。
動的メモリ富化戦略は、複雑な空間的およびスペクトル的依存関係を段階的にキャプチャし、より表現力のある特徴表現をもたらす。
- 参考スコア(独自算出の注目度): 3.5093938502961763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral image (HSI) classification remains a challenging task due to the intricate spatial-spectral correlations. Existing transformer models excel in capturing long-range dependencies but often suffer from information redundancy and attention inefficiencies, limiting their ability to model fine-grained relationships crucial for HSI classification. To overcome these limitations, this work proposes MemFormer, a lightweight and memory-enhanced transformer. MemFormer introduces a memory-enhanced multi-head attention mechanism that iteratively refines a dynamic memory module, enhancing feature extraction while reducing redundancy across layers. Additionally, a dynamic memory enrichment strategy progressively captures complex spatial and spectral dependencies, leading to more expressive feature representations. To further improve structural consistency, we incorporate a spatial-spectral positional encoding (SSPE) tailored for HSI data, ensuring continuity without the computational burden of convolution-based approaches. Extensive experiments on benchmark datasets demonstrate that MemFormer achieves superior classification accuracy, outperforming state-of-the-art methods.
- Abstract(参考訳): ハイパースペクトル画像(HSI)分類は、複雑な空間スペクトル相関のため、依然として困難な課題である。
既存のトランスフォーマーモデルは、長距離依存を捉えるのに優れているが、しばしば情報冗長性と注意力の非効率に悩まされ、HSI分類に不可欠なきめ細かい関係をモデル化する能力を制限する。
これらの制限を克服するため、この研究は軽量でメモリ駆動のトランスフォーマーであるMemFormerを提案する。
MemFormerはメモリ強化されたマルチヘッドアテンション機構を導入し、動的メモリモジュールを反復的に洗練し、レイヤ間の冗長性を低減しながら機能抽出を強化する。
さらに、動的メモリ拡張戦略は、複雑な空間的およびスペクトル的依存関係を段階的にキャプチャし、より表現力のある特徴表現をもたらす。
構造整合性をさらに向上するため,HSIデータに適した空間スペクトル位置符号化(SSPE)を導入し,畳み込みに基づくアプローチの計算負担を伴わずに連続性を確保する。
ベンチマークデータセットに対する大規模な実験により、MemFormerはより優れた分類精度を達成し、最先端の手法より優れていることが示された。
関連論文リスト
- Any Image Restoration via Efficient Spatial-Frequency Degradation Adaptation [158.37640586809187]
劣化した画像を1つのモデルで効率的に復元することは、ますます重要になっている。
我々のアプローチはAnyIRと呼ばれ、様々な劣化にまたがる固有の類似性を活用する統一された経路をとっています。
劣化認識と文脈的注意を融合させるため,空間周波数並列融合戦略を提案する。
論文 参考訳(メタデータ) (2025-04-19T09:54:46Z) - Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
大規模言語モデル(LLM)は、自然言語処理タスク全体で強力なパフォーマンスを示すが、デプロイメント用に修正された場合、大幅なパフォーマンス低下を経験する。
この現象をモデル出血(パラメータ変更とアーキテクチャ変更によるパフォーマンス低下)と定義する。
論文 参考訳(メタデータ) (2025-03-31T10:16:03Z) - Dynamic Attention Mechanism in Spatiotemporal Memory Networks for Object Tracking [8.040709469401257]
本研究では,空間的注意重みを解析することにより,注意重みを適応的に調節する動的注意機構を提案する。
目標運動状態に基づいて計算資源を自律的に割り当てる軽量ゲーティングネットワークは、挑戦的なシナリオにおいて高い識別可能性の特徴を優先する。
論文 参考訳(メタデータ) (2025-03-21T00:48:31Z) - Contextual Compression Encoding for Large Language Models: A Novel Framework for Multi-Layered Parameter Space Pruning [0.0]
文脈圧縮。
(CCE)はパラメータ分布を動的に再構成する多段符号化機構を導入した。
CCEは言語表現力とコヒーレンスを維持し、テキスト生成や分類タスクの精度を維持した。
論文 参考訳(メタデータ) (2025-02-12T11:44:19Z) - Structured Token Retention and Computational Memory Paths in Large Language Models [0.0]
本稿では,文脈的重要性に基づいてトークンの永続化を動的に調整する確率的選択フレームワークを提案する。
階層的なメモリ割り当てによって拡張され、トークン埋め込みの構造化された再配置によって保持効率を向上する。
STRとCMPのオープンソースモデルへの統合は、構造化メモリ保持手法の適応性を示している。
論文 参考訳(メタデータ) (2025-02-05T11:59:22Z) - Autonomous Structural Memory Manipulation for Large Language Models Using Hierarchical Embedding Augmentation [0.0]
本研究では,マルチレベルセマンティック構造を通じてトークンの表現を再定義する手段として,階層的な埋め込み拡張を導入する。
その結果、より長い入力シーケンスに対して処理オーバーヘッドが大幅に削減され、計算効率が大幅に向上した。
トークン表現とメモリ構成を動的に調整する能力は、様々な予測不可能な入力条件下でモデルの堅牢性に寄与した。
論文 参考訳(メタデータ) (2025-01-23T22:20:36Z) - SR-CIS: Self-Reflective Incremental System with Decoupled Memory and Reasoning [32.18013657468068]
自己回帰補充インクリメンタルシステム(SR-CIS)を提案する。
Complementary Inference Module (CIM)とComplementary Memory Module (CMM)で構成されている。
CMMはタスク固有の短期記憶(STM)領域と汎用長期記憶(LTM)領域から構成される。
トレーニング中に画像のテキスト記述を格納し、Scenario Replay Module (SRM) と組み合わせることで、SR-CISは限られたストレージ要件で安定したインクリメンタルメモリを実現する。
論文 参考訳(メタデータ) (2024-08-04T09:09:35Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。