論文の概要: Predicting Forced Responses of Probability Distributions via the Fluctuation-Dissipation Theorem and Generative Modeling
- arxiv url: http://arxiv.org/abs/2504.13333v1
- Date: Thu, 17 Apr 2025 20:54:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 20:14:04.258739
- Title: Predicting Forced Responses of Probability Distributions via the Fluctuation-Dissipation Theorem and Generative Modeling
- Title(参考訳): ゆらぎ散逸理論と生成モデルによる確率分布の強制応答予測
- Authors: Ludovico T. Giorgini, Fabrizio Falasca, Andre N. Souza,
- Abstract要約: 非線形系の高次モーメントの小さな外乱に対する応答を推定するための新しいデータ駆動フレームワークを提案する。
標準実装はガウス近似に依存しており、平均応答を正確に予測できるが、高次モーメントに顕著なバイアスをもたらすことが多い。
我々はGFDTと最近のスコアベース生成モデリングの進歩を組み合わせることで、完全な密度再構成を必要とせず、スコア関数の直接推定を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel data-driven framework for estimating the response of higher-order moments of nonlinear stochastic systems to small external perturbations. The classical Generalized Fluctuation-Dissipation Theorem (GFDT) links the unperturbed steady-state distribution to the system's linear response. Standard implementations rely on Gaussian approximations, which can often accurately predict the mean response but usually introduce significant biases in higher-order moments, such as variance, skewness, and kurtosis. To address this limitation, we combine GFDT with recent advances in score-based generative modeling, which enable direct estimation of the score function from data without requiring full density reconstruction. Our method is validated on three reduced-order stochastic models relevant to climate dynamics: a scalar stochastic model for low-frequency climate variability, a slow-fast triad model mimicking key features of the El Nino-Southern Oscillation (ENSO), and a six-dimensional stochastic barotropic model capturing atmospheric regime transitions. In all cases, the approach captures strongly nonlinear and non-Gaussian features of the system's response, outperforming traditional Gaussian approximations.
- Abstract(参考訳): 非線形確率系の高次モーメントの小さな外乱に対する応答を推定するための新しいデータ駆動フレームワークを提案する。
古典的一般化ゆらぎ散逸定理(GFDT)は、不摂動定常分布と系の線形応答を結びつける。
標準実装はガウス近似(英語版)に依存しており、平均応答を正確に予測することができるが、通常、分散、歪、クルトシスのような高次モーメントに顕著なバイアスをもたらす。
この制限に対処するため、GFDTとスコアベース生成モデリングの最近の進歩を組み合わせることで、完全な密度再構成を必要とせず、データから直接スコア関数を推定できる。
本手法は,低周波気候変動に対するスカラー確率モデル,エルニーニョ・サウス・オシレーション (ENSO) の重要な特徴を模倣した低周波気候変動に対するスカラー確率モデル,大気状態遷移を捉えた6次元確率バロティクスモデル,の3つの縮小次確率モデルに対して検証を行った。
いずれの場合も、このアプローチはシステムの応答の強い非線形および非ガウス的特徴を捉え、従来のガウス近似よりも優れている。
関連論文リスト
- Generative Latent Neural PDE Solver using Flow Matching [8.397730500554047]
低次元の潜伏空間にPDE状態を埋め込んだPDEシミュレーションのための潜伏拡散モデルを提案する。
我々のフレームワークは、オートエンコーダを使用して、異なるタイプのメッシュを統一された構造化潜在グリッドにマッピングし、複雑なジオメトリをキャプチャします。
数値実験により,提案モデルは,精度と長期安定性の両方において,決定論的ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2025-03-28T16:44:28Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
本稿では,ハイブリッドニューラル微分可能モデルにおける有効かつ効率的な不確実性伝播と推定のための新しい手法DiffHybrid-UQを提案する。
具体的には,データノイズとてんかんの不確かさから生じるアレタリック不確かさと,モデル形状の相違やデータ空間のばらつきから生じるエピステマティック不確かさの両方を効果的に識別し,定量化する。
論文 参考訳(メタデータ) (2023-12-30T07:40:47Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
本稿では,ODEベクトル場を再パラメータ化するために正規化フローを導入し,データ駆動の事前分布を導出する。
また, GP ODE の後部推定に正規化フローを適用し, 強平均場仮定の問題を解く。
シミュレーション力学系と実世界の人間の動作データに対するアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-17T09:28:47Z) - Volatility Based Kernels and Moving Average Means for Accurate
Forecasting with Gaussian Processes [36.712632126776285]
本稿では, ボラティリティモデルのクラスを, 特殊共分散関数を持つ階層型ガウス過程(GP)モデルとして再キャストする方法を示す。
このフレームワーク内では、よく研究されたドメインからインスピレーションを得て、ストックおよび風速予測においてベースラインを著しく上回る新しいモデルのVoltとMagpieを導入する。
論文 参考訳(メタデータ) (2022-07-13T23:02:54Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。