論文の概要: On the minimax optimality of Flow Matching through the connection to kernel density estimation
- arxiv url: http://arxiv.org/abs/2504.13336v1
- Date: Thu, 17 Apr 2025 21:06:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 20:13:11.452665
- Title: On the minimax optimality of Flow Matching through the connection to kernel density estimation
- Title(参考訳): カーネル密度推定への接続によるフローマッチングのミニマックス最適性について
- Authors: Lea Kunkel, Mathias Trabs,
- Abstract要約: フローマッチングは拡散モデルの単純で柔軟な代替手段である。
フローマッチングはワッサーシュタイン距離の対数係数までの最適収束率と一致することを証明した。
また,高次元設定におけるフローマッチングの有効性を初めて正当化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flow Matching has recently gained attention in generative modeling as a simple and flexible alternative to diffusion models, the current state of the art. While existing statistical guarantees adapt tools from the analysis of diffusion models, we take a different perspective by connecting Flow Matching to kernel density estimation. We first verify that the kernel density estimator matches the optimal rate of convergence in Wasserstein distance up to logarithmic factors, improving existing bounds for the Gaussian kernel. Based on this result, we prove that for sufficiently large networks, Flow Matching also achieves the optimal rate up to logarithmic factors, providing a theoretical foundation for the empirical success of this method. Finally, we provide a first justification of Flow Matching's effectiveness in high-dimensional settings by showing that rates improve when the target distribution lies on a lower-dimensional linear subspace.
- Abstract(参考訳): Flow Matchingは最近、拡散モデルの単純で柔軟な代替品としてジェネレーティブモデリングに注目されている。
既存の統計的保証は拡散モデルからツールを適応させるが、フローマッチングとカーネル密度推定を結びつけることで異なる視点を採る。
まず、核密度推定器は、対数因子までワッサーシュタイン距離の最適収束率と一致し、ガウス核の既存の境界を改善する。
この結果から,フローマッチングは対数的要因の最適速度も達成し,この手法の実証的成功の理論的基礎となることを証明した。
最後に, ターゲット分布が低次元線形部分空間上にある場合, 流量が向上することを示すことにより, フローマッチングの有効性を高次元環境での最初の正当化を行う。
関連論文リスト
- Theoretical Guarantees for High Order Trajectory Refinement in Generative Flows [40.884514919698596]
フローマッチングは、生成モデリングの強力なフレームワークとして登場した。
我々は,高次フローマッチングが分布推定器として最悪の場合の最適性を保っていることを証明した。
論文 参考訳(メタデータ) (2025-03-12T05:07:07Z) - Advancing Wasserstein Convergence Analysis of Score-Based Models: Insights from Discretization and Second-Order Acceleration [5.548787731232499]
スコアベース拡散モデルのワッサーシュタイン収束解析に着目する。
我々は、オイラー離散化、指数中点法、ランダム化法など、様々な離散化スキームを比較する。
局所線形化法に基づく加速型サンプリング器を提案する。
論文 参考訳(メタデータ) (2025-02-07T11:37:51Z) - On the Wasserstein Convergence and Straightness of Rectified Flow [54.580605276017096]
Rectified Flow (RF) は、ノイズからデータへの直流軌跡の学習を目的とした生成モデルである。
RFのサンプリング分布とターゲット分布とのワッサーシュタイン距離に関する理論的解析を行った。
本稿では,従来の経験的知見と一致した1-RFの特異性と直線性を保証する一般的な条件について述べる。
論文 参考訳(メタデータ) (2024-10-19T02:36:11Z) - Flow matching achieves almost minimax optimal convergence [50.38891696297888]
フローマッチング (FM) は, シミュレーションのない生成モデルとして注目されている。
本稿では,大試料径のFMの収束特性を$p$-Wasserstein 距離で論じる。
我々は、FMが1leq p leq 2$でほぼ最小の収束率を達成できることを確立し、FMが拡散モデルに匹敵する収束率に達するという最初の理論的証拠を示す。
論文 参考訳(メタデータ) (2024-05-31T14:54:51Z) - Analyzing Neural Network-Based Generative Diffusion Models through Convex Optimization [45.72323731094864]
本稿では,2層ニューラルネットワークを用いた拡散モデル解析のための理論的枠組みを提案する。
我々は,1つの凸プログラムを解くことで,スコア予測のための浅層ニューラルネットワークのトレーニングが可能であることを証明した。
本結果は, ニューラルネットワークに基づく拡散モデルが漸近的でない環境で何を学習するかを, 正確に評価するものである。
論文 参考訳(メタデータ) (2024-02-03T00:20:25Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solve flow-based distributionally robust optimization (DRO) problem with Wasserstein uncertainty set。
我々は、連続した最悪のケース分布(Last Favorable Distribution, LFD)とそれからのサンプルを見つけることを目指している。
本稿では、逆学習、分布論的に堅牢な仮説テスト、およびデータ駆動型分布摂動差分プライバシーの新しいメカニズムを実証する。
論文 参考訳(メタデータ) (2023-10-30T03:53:31Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - High-dimensional density estimation with tensorizing flow [5.457842083043014]
観測データから高次元確率密度関数を推定するテンソル化流法を提案する。
提案手法は、テンソルトレインの最適化のない特徴とフローベース生成モデルの柔軟性を組み合わせたものである。
論文 参考訳(メタデータ) (2022-12-01T18:45:45Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Learning Implicit Generative Models with Theoretical Guarantees [12.761710596142109]
我々はtextbfimplicit textbfmodeling (UnifiGem) のためのtextbfunified textbfframework を提案する。
UnifiGemは、最適輸送、数値ODE、密度比(密度差)推定、ディープニューラルネットワークのアプローチを統合する。
合成データセットと実ベンチマークデータセットの両方の実験結果は、我々の理論的な結果をサポートし、UnifiGemの有効性を実証する。
論文 参考訳(メタデータ) (2020-02-07T15:55:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。