Adaptive AI decision interface for autonomous electronic material discovery
- URL: http://arxiv.org/abs/2504.13344v1
- Date: Thu, 17 Apr 2025 21:26:48 GMT
- Title: Adaptive AI decision interface for autonomous electronic material discovery
- Authors: Yahao Dai, Henry Chan, Aikaterini Vriza, Fredrick Kim, Yunfei Wang, Wei Liu, Naisong Shan, Jing Xu, Max Weires, Yukun Wu, Zhiqiang Cao, C. Suzanne Miller, Ralu Divan, Xiaodan Gu, Chenhui Zhu, Sihong Wang, Jie Xu,
- Abstract summary: We develop and implement an AI decision interface on our AI/AE system.<n>The central element of the interface is an AI advisor that performs real-time progress monitoring, data analysis, and interactive human-AI collaboration.<n>We apply this platform to an emerging type of electronic materials-mixed ion-electron conducting polymers.
- Score: 9.228340729592736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-powered autonomous experimentation (AI/AE) can accelerate materials discovery but its effectiveness for electronic materials is hindered by data scarcity from lengthy and complex design-fabricate-test-analyze cycles. Unlike experienced human scientists, even advanced AI algorithms in AI/AE lack the adaptability to make informative real-time decisions with limited datasets. Here, we address this challenge by developing and implementing an AI decision interface on our AI/AE system. The central element of the interface is an AI advisor that performs real-time progress monitoring, data analysis, and interactive human-AI collaboration for actively adapting to experiments in different stages and types. We applied this platform to an emerging type of electronic materials-mixed ion-electron conducting polymers (MIECPs) -- to engineer and study the relationships between multiscale morphology and properties. Using organic electrochemical transistors (OECT) as the testing-bed device for evaluating the mixed-conducting figure-of-merit -- the product of charge-carrier mobility and the volumetric capacitance ({\mu}C*), our adaptive AI/AE platform achieved a 150% increase in {\mu}C* compared to the commonly used spin-coating method, reaching 1,275 F cm-1 V-1 s-1 in just 64 autonomous experimental trials. A study of 10 statistically selected samples identifies two key structural factors for achieving higher volumetric capacitance: larger crystalline lamellar spacing and higher specific surface area, while also uncovering a new polymer polymorph in this material.
Related papers
- Collaborative AI Enhances Image Understanding in Materials Science [4.014060445038403]
The Copilot for Real-world Experimental Scientist (CRESt) system empowers researchers to control autonomous laboratories through conversational AI.<n>We have enhanced CRESt by integrating a multi-agent collaboration mechanism that utilizes the complementary strengths of the ChatGPT and Gemini models.
arXiv Detail & Related papers (2025-03-17T13:44:30Z) - Autonomous Microscopy Experiments through Large Language Model Agents [4.241267255764773]
Large language models (LLMs) have accelerated the development of self-driving laboratories (SDLs) for materials research.<n>Here, we introduce AILA (Artificially Intelligent Lab Assistant), a framework that automates atomic force microscopy (AFM) through LLM-driven agents.<n>Our systematic assessment shows that state-of-the-art language models struggle even with basic tasks such as documentation retrieval.
arXiv Detail & Related papers (2024-12-18T09:35:28Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
We propose an approach for the quick and reliable screening of ionic conductors through the analysis of a universal interatomic potential.<n>Eight out of the ten highest-ranked materials are confirmed to be superionic at room temperature in first-principles calculations.<n>Our method achieves a speed-up factor of approximately 50 compared to molecular dynamics driven by a machine-learning potential, and is at least 3,000 times faster compared to first-principles molecular dynamics.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.<n>The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.<n>Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Physics in the Machine: Integrating Physical Knowledge in Autonomous
Phase-Mapping [10.629434761354938]
Science-informed AI or scientific AI has grown from a focus on data analysis to now controlling experiment design, simulation, execution and analysis in closed-loop autonomous systems.
The CAMEO algorithm employs scientific AI to address two tasks: learning a material system's composition-structure relationship and identifying materials compositions with optimal functional properties.
arXiv Detail & Related papers (2021-11-15T00:48:34Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Automated and Autonomous Experiment in Electron and Scanning Probe
Microscopy [0.0]
We aim to analyze the major pathways towards automated experiment (AE) in imaging methods with sequential image formation mechanisms.
We argue that automated experiments should necessarily be discussed in a broader context of the general domain knowledge that both informs the experiment and is increased as the result of the experiment.
arXiv Detail & Related papers (2021-03-22T20:24:41Z) - CASTELO: Clustered Atom Subtypes aidEd Lead Optimization -- a combined
machine learning and molecular modeling method [2.8381402107366034]
We propose a combined machine learning and molecular modeling approach that automates lead optimization workflow.
Our method provides new hints for drug modification hotspots which can be used to improve drug efficacy.
arXiv Detail & Related papers (2020-11-27T15:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.