論文の概要: THOUGHTTERMINATOR: Benchmarking, Calibrating, and Mitigating Overthinking in Reasoning Models
- arxiv url: http://arxiv.org/abs/2504.13367v1
- Date: Thu, 17 Apr 2025 22:16:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 20:01:28.22434
- Title: THOUGHTTERMINATOR: Benchmarking, Calibrating, and Mitigating Overthinking in Reasoning Models
- Title(参考訳): THOUGHTTERMINATOR:推論モデルにおけるベンチマーク、校正、再考
- Authors: Xiao Pu, Michael Saxon, Wenyue Hua, William Yang Wang,
- Abstract要約: 本稿では,問題レベルの難易度を近似的に測定し,問題の難易度と最適なトークン使用量との間に明確な関係があることを実証する。
一般に、推論モデルは、特に簡単な問題に対して、キャリブレーションが不十分である。
トレーニング不要なブラックボックス復号法であるTHOUGHTTERMINATORを導入する。
- 参考スコア(独自算出の注目度): 65.39456695678713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning models have demonstrated impressive performance on difficult tasks that traditional language models struggle at. However, many are plagued with the problem of overthinking--generating large amounts of unnecessary tokens which don't improve accuracy on a question. We introduce approximate measures of problem-level difficulty and demonstrate that a clear relationship between problem difficulty and optimal token spend exists, and evaluate how well calibrated a variety of reasoning models are in terms of efficiently allocating the optimal token count. We find that in general, reasoning models are poorly calibrated, particularly on easy problems. To evaluate calibration on easy questions we introduce DUMB500, a dataset of extremely easy math, reasoning, code, and task problems, and jointly evaluate reasoning model on these simple examples and extremely difficult examples from existing frontier benchmarks on the same task domain. Finally, we introduce THOUGHTTERMINATOR, a training-free black box decoding technique that significantly improves reasoning model calibration.
- Abstract(参考訳): 推論モデルは、従来の言語モデルが苦労する困難なタスクにおいて、素晴らしいパフォーマンスを示しています。
しかし、多くの人は過度に考える問題に悩まされており、問題に対する正確さを向上しない大量の不要なトークンを発生させる。
本稿では,問題レベルの難易度を近似的に測定し,問題難易度と最適なトークン使用量との間に明確な関係があることを証明し,最適なトークン数を効率的に割り当てる上で,様々な推論モデルがどの程度うまく校正されているかを評価する。
一般に、推論モデルは、特に簡単な問題に対して、キャリブレーションが不十分である。
簡単な質問に対するキャリブレーションを評価するために、非常に簡単な数学、推論、コード、タスク問題のデータセットであるDUMB500を導入し、これらの単純な例と、同じタスクドメイン上の既存のフロンティアベンチマークの非常に難しい例から推論モデルを共同で評価する。
最後に,学習不要のブラックボックス復号法であるTHOUGHTTERMINATORを導入する。
関連論文リスト
- Climbing the Ladder of Reasoning: What LLMs Can-and Still Can't-Solve after SFT? [59.418994222096885]
AIME24データセット上でモデル性能の詳細な解析を行う。
我々は質問を4段階(易、中、硬、極度硬)に分類する。
我々は,SFT-1Kインスタンスが最小限であるR1推論スタイルを採用する必要があることを見出した。
エクレベルの質問は、根本的に異なる課題を示します。
論文 参考訳(メタデータ) (2025-04-16T03:39:38Z) - DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models [31.189242663680695]
本稿では,問題の難易度に基づいて,モデルがチェーン・オブ・ソート(CoT)の長さを自律的に調整できる新しいフレームワークであるDASTを紹介する。
多様なデータセットとモデルスケールの実験により、DASTは複雑な問題に対する推論精度を維持しながら、過剰思考を効果的に軽減することを示した。
論文 参考訳(メタデータ) (2025-03-06T14:23:06Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASONは、大規模言語モデルの推論能力を評価するための論理パズルベンチマークである。
状態チェックと状態遷移という2つのタスクを導入し、モデルが現在の状況をどのように評価するかを総合的に評価し、次の動きを計画する。
状態チェックと遷移データに基づいてトレーニングされたモデルでは、GSM8Kで最大5.1%の精度で数学推論が向上することを示す。
論文 参考訳(メタデータ) (2025-02-27T16:23:25Z) - Large Language Models and Mathematical Reasoning Failures [1.6114012813668932]
本稿では,50の高校レベルの単語問題を用いた大規模言語モデル(LLM)の数学的推論能力について検討する。
最終回答と解決手順の両方を厳格に分析して、推論の失敗を特定します。
より新しいモデル(例えば、o3-mini、deepseek-r1)はより精度が高いが、全てのモデルは空間的推論、戦略的計画、算術における誤りを示す。
論文 参考訳(メタデータ) (2025-02-17T09:07:32Z) - MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
各種モデルにおけるMATH-P-Hardの性能低下を観察する。
また、学習した問題解決スキルを盲目的に適用する新しい形態の記憶に関する懸念も提起する。
論文 参考訳(メタデータ) (2025-02-10T13:31:46Z) - ProcessBench: Identifying Process Errors in Mathematical Reasoning [62.80402845414901]
本稿では,数学的推論における誤ったステップを識別する能力を測定するためのProcessBenchを紹介する。
ProcessBenchは3400のテストケースで構成され、主に競合とオリンピアードレベルの数学問題に焦点を当てている。
我々はProcessBenchについて、プロセス報酬モデル(PRM)と批判モデルという2種類のモデルを含む広範囲な評価を行う。
論文 参考訳(メタデータ) (2024-12-09T15:11:40Z) - Subtle Errors Matter: Preference Learning via Error-injected Self-editing [59.405145971637204]
eRror-Injected Self-Editing (RISE) と呼ばれる新しい好み学習フレームワークを提案する。
RISEは、事前定義された微妙なエラーをピボットトークンに注入する。
RISEの有効性を検証する実験では、Qwen2-7B-Instructでの優先学習により、GSM8Kでは3.0%、MATHでは7.9%が顕著に改善され、トレーニングサンプルは4.5Kに留まった。
論文 参考訳(メタデータ) (2024-10-09T07:43:38Z) - Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models [13.532180752491954]
大規模言語モデル(LLM)は、しばしばスケーリング法則に従う強力な一般化を持つ基礎モデルの例として記述される。
ここでは、強い関数を主張する全てのSOTAモデルの一般化と基本的推論の劇的な分解を示す。
また、間違った解法において強い過信感を観察し、妥当な音響的説明のような折り畳みの形で表現する。
論文 参考訳(メタデータ) (2024-06-04T07:43:33Z) - CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities [25.857946070979576]
概念とHint-Annotated Math Problems (CHAMP) は、概念に注釈を付けた高校数学の競争問題である。
このベンチマークは困難で、最高のモデルは標準設定で58.1%しか得点できない。
モデルはしばしば、間違った推論ステップを通じて、正しい最終回答に到達します。
論文 参考訳(メタデータ) (2024-01-13T03:18:16Z) - GRACE: Discriminator-Guided Chain-of-Thought Reasoning [75.35436025709049]
本稿では, 正しい推論手順を導出するために, GRACE (CorrectnEss Discriminator) を用いたチェーン・オブ・シークレット・リAsoningを提案する。
GRACEは、正しいステップと間違ったステップに対して対照的な損失で訓練された判別器を採用しており、復号時に次のステップ候補を採点するために使用される。
論文 参考訳(メタデータ) (2023-05-24T09:16:51Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。