論文の概要: The Impact of AI on the Cyber Offense-Defense Balance and the Character of Cyber Conflict
- arxiv url: http://arxiv.org/abs/2504.13371v1
- Date: Thu, 17 Apr 2025 22:40:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 20:00:14.900041
- Title: The Impact of AI on the Cyber Offense-Defense Balance and the Character of Cyber Conflict
- Title(参考訳): サイバー犯罪とディフェンスバランスに及ぼすAIの影響とサイバー紛争の特徴
- Authors: Andrew J. Lohn,
- Abstract要約: サイバードメインは本質的にデジタルであり、AIトレーニングとサイバーアプリケーションの間に強いフィードバックループがある。
AIが進歩を続けるにつれて、サイバードメインがどのように変化するのかを理解することが重要です。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unlike other domains of conflict, and unlike other fields with high anticipated risk from AI, the cyber domain is intrinsically digital with a tight feedback loop between AI training and cyber application. Cyber may have some of the largest and earliest impacts from AI, so it is important to understand how the cyber domain may change as AI continues to advance. Our approach reviewed the literature, collecting nine arguments that have been proposed for offensive advantage in cyber conflict and nine proposed arguments for defensive advantage. We include an additional forty-eight arguments that have been proposed to give cyber conflict and competition its character as collected separately by Healey, Jervis, and Nandrajog. We then consider how each of those arguments and propositions might change with varying degrees of AI advancement. We find that the cyber domain is too multifaceted for a single answer to whether AI will enhance offense or defense broadly. AI will improve some aspects, hinder others, and leave some aspects unchanged. We collect and present forty-four ways that we expect AI to impact the cyber offense-defense balance and the character of cyber conflict and competition.
- Abstract(参考訳): 競合の他の領域と異なり、AIから高いリスクを期待されている他の分野とは異なり、サイバードメインは本質的にデジタルであり、AIトレーニングとサイバーアプリケーションの間に密なフィードバックループがある。
サイバーはAIから最も大きく、最も初期の影響を受けている可能性があるため、AIが進歩を続けるにつれて、サイバードメインがどのように変化するかを理解することが重要である。
本稿では,サイバー紛争における攻撃的優位性について提案された9つの論点と,防衛的優位性に関する9つの論点を概説した。
我々は、Healey、Jervis、Nandrajogによって別々に収集されたサイバー紛争と競争のために提案された48の議論を含む。
次に、これらの議論と提案が、AIの進歩の度合いを変えてどのように変化するかを検討する。
サイバードメインは多面的すぎるので、AIが攻撃力を高めたり、防衛力を高めるかどうかの単一の答えにはならない。
AIはいくつかの側面を改善し、他の側面を妨げる。
私たちは、AIがサイバー犯罪と防衛のバランスと、サイバー紛争と競争の性格に影響を与えることを期待している44の方法を収集し、提示します。
関連論文リスト
- A Framework for Evaluating Emerging Cyberattack Capabilities of AI [11.595840449117052]
本研究は,(1)エンド・ツー・エンド・エンド・アタック・チェーンの検証,(2)AI脅威評価のギャップの同定,(3)目標とする緩和の優先順位付けを支援する,という制約に対処する新たな評価フレームワークを導入する。
私たちは、GoogleのThreat Intelligence Groupがカタログ化したサイバー攻撃で12,000以上の実世界のAIインスタンスを分析しました。
私たちのベンチマークは、さまざまなサイバー攻撃フェーズにまたがる50の新たな課題で構成されています。
論文 参考訳(メタデータ) (2025-03-14T23:05:02Z) - SoK: On the Offensive Potential of AI [14.072632973726906]
ますます多くの証拠が、AIが攻撃目的にも使われていることを示している。
現存する研究は、AIの攻撃的可能性の全体像を描けなかった。
論文 参考訳(メタデータ) (2024-12-24T14:02:44Z) - A Survey on Offensive AI Within Cybersecurity [1.8206461789819075]
攻撃的AIに関する調査論文は、AIシステムに対する攻撃および使用に関する様々な側面を包括的にカバーする。
消費者、企業、公共のデジタルインフラストラクチャなど、さまざまな分野における攻撃的なAIプラクティスの影響を掘り下げる。
この論文では、敵対的な機械学習、AIモデルに対する攻撃、インフラストラクチャ、インターフェース、および情報収集、ソーシャルエンジニアリング、兵器化されたAIといった攻撃的テクニックについて検討する。
論文 参考訳(メタデータ) (2024-09-26T17:36:22Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
本稿では,AIの誤用によるエスカレート脅威,特にLarge Language Models(LLMs)の使用について述べる。
一連の制御された実験を通じて、これらのモデルがどのようにして倫理的およびプライバシー保護を回避し、効果的にサイバー攻撃を発生させるかを実証する。
私たちはまた、サイバー攻撃の自動化と実行のために特別に設計されたカスタマイズされた微調整のLLMであるOccupy AIを紹介します。
論文 参考訳(メタデータ) (2024-08-23T02:56:13Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Artificial Intelligence for Cybersecurity: Threats, Attacks and
Mitigation [1.80476943513092]
サイバー攻撃の激化は、最近の人工知能の進歩から反響を呼んだ。
AIの介入は特定のタスクを自動化するだけでなく、多くの折り畳みによって効率を向上させる。
本稿では,サイバー攻撃に対する従来的およびインテリジェントな防御方法とともに,サイバーセキュリティとサイバー脅威について論じる。
論文 参考訳(メタデータ) (2022-09-27T15:20:23Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
この調査は、組織に対する攻撃的なAIの脅威を調査する。
まず、AIが敵の方法、戦略、目標、および全体的な攻撃モデルをどのように変えるかについて議論する。
そして、文献レビューを通じて、敵が攻撃を強化するために使用できる33の攻撃的AI能力を特定します。
論文 参考訳(メタデータ) (2021-06-30T01:03:28Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
近年、ほとんどのAIモデルは高度なハッキング技術に弱い。
この課題は、敵AIの研究努力を共同で進めるきっかけとなった。
我々は、AIアプリケーションに対する敵攻撃を実証する総合的なサイバーセキュリティレビューを提示する。
論文 参考訳(メタデータ) (2021-02-09T06:06:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。