論文の概要: Trust, but verify
- arxiv url: http://arxiv.org/abs/2504.13443v1
- Date: Fri, 18 Apr 2025 03:49:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 19:23:11.628845
- Title: Trust, but verify
- Title(参考訳): 信頼はするが、検証する
- Authors: Michael J. Yuan, Carlos Campoy, Sydney Lai, James Snewin, Ju Long,
- Abstract要約: ガイアネットワークのアルゴリズムと実験データについて論じる。
また、EigenLayer AVSとして実装されたオブジェクト間検証システムについても論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized AI agent networks, such as Gaia, allows individuals to run customized LLMs on their own computers and then provide services to the public. However, in order to maintain service quality, the network must verify that individual nodes are running their designated LLMs. In this paper, we demonstrate that in a cluster of mostly honest nodes, we can detect nodes that run unauthorized or incorrect LLM through social consensus of its peers. We will discuss the algorithm and experimental data from the Gaia network. We will also discuss the intersubjective validation system, implemented as an EigenLayer AVS to introduce financial incentives and penalties to encourage honest behavior from LLM nodes.
- Abstract(参考訳): Gaiaのような分散AIエージェントネットワークは、個人が自身のコンピュータ上でカスタマイズされたLLMを実行し、一般にサービスを提供することを可能にする。
しかし、サービス品質を維持するためには、個々のノードが指定されたLLMを実行していることを確認する必要がある。
本稿では,主に正直なノードのクラスタにおいて,そのピアの社会的コンセンサスを通じて,不正あるいは不正なLDMを実行するノードを検出することを実証する。
ガイアネットワークのアルゴリズムと実験データについて論じる。
また,LLMノードからの正直な行動を促すための金銭的インセンティブや罰則を導入するために,EigenLayer AVSとして実装されたオブジェクト間検証システムについても論じる。
関連論文リスト
- Do LLMs trust AI regulation? Emerging behaviour of game-theoretic LLM agents [61.132523071109354]
本稿では、異なる規制シナリオ下での戦略選択をモデル化する、AI開発者、規制当局、ユーザ間の相互作用について検討する。
我々の研究は、純粋なゲーム理論エージェントよりも「悲観的」な姿勢を採用する傾向にある戦略的AIエージェントの出現する振る舞いを特定する。
論文 参考訳(メタデータ) (2025-04-11T15:41:21Z) - Differentially Private Steering for Large Language Model Alignment [55.30573701583768]
本稿では,大規模言語モデルとプライベートデータセットの整合性に関する最初の研究について述べる。
本研究は,プライバシ保証付きアクティベーションを編集するPSA(Private Steering for LLM Alignment)アルゴリズムを提案する。
以上の結果から,PSAはLPMアライメントのDP保証を実現し,性能の低下を最小限に抑えることができた。
論文 参考訳(メタデータ) (2025-01-30T17:58:36Z) - Engagement-Driven Content Generation with Large Language Models [8.049552839071918]
大規模言語モデル(LLM)は1対1の相互作用において重要な説得能力を示す。
本研究では,相互接続型ユーザにおけるLCMの社会的影響と複雑な意見力学について検討する。
論文 参考訳(メタデータ) (2024-11-20T10:40:08Z) - OCEAN: Offline Chain-of-thought Evaluation and Alignment in Large Language Models [68.17018458283651]
本研究は,LLMのチェーン・オブ・思想能力のオフライン評価に焦点をあてる。
我々は知識グラフ(例えばWikidata5m)を使って、生成された思考の連鎖に対するフィードバックを提供する。
提案手法に基づいてLCMを最適化する方法を示す。
論文 参考訳(メタデータ) (2024-10-31T07:48:44Z) - From Yes-Men to Truth-Tellers: Addressing Sycophancy in Large Language Models with Pinpoint Tuning [91.79567270986901]
大規模言語モデル(LLM)は、ユーザプロンプトへの順守を、妥当な応答よりも優先する傾向がある。
近年の研究では、教師付き微調整(SFT)を用いて、梅毒問題を軽減することが提案されている。
そこで本研究では,特定の目的のために関心のあるモジュールを調整した新しいピンポイントチューニング(SPT)を提案する。
論文 参考訳(メタデータ) (2024-09-03T07:01:37Z) - Pathway to Secure and Trustworthy ZSM for LLMs: Attacks, Defense, and Opportunities [11.511012020557326]
本稿では,ZSMネットワークにおける大規模言語モデル(LLM)の微調整に伴うセキュリティ脆弱性について検討する。
LLMをサービスとして使用する場合の個人データ漏洩につながる可能性のあるダウンストリームタスクに対して,メンバシップ推論攻撃が有効であることを示す。
論文 参考訳(メタデータ) (2024-08-01T17:15:13Z) - PFID: Privacy First Inference Delegation Framework for LLMs [34.59282305562392]
本稿では,LPMのためのPFIDという新しいプライバシ保護フレームワークを提案する。
モデルのシャーディングと特異値分解を通じてユーザデータをローカライズすることで、重要なプライバシー上の懸念に対処する。
論文 参考訳(メタデータ) (2024-06-18T03:27:09Z) - Auto-Arena: Automating LLM Evaluations with Agent Peer Battles and Committee Discussions [77.66677127535222]
Auto-ArenaはLLMエージェントを使用した評価プロセス全体を自動化した革新的なフレームワークである。
我々の実験では、Auto-Arenaは92.14%の相関関係を示し、以前の専門家が注釈付けしたベンチマークをすべて上回っている。
論文 参考訳(メタデータ) (2024-05-30T17:19:19Z) - Label-free Node Classification on Graphs with Large Language Models
(LLMS) [46.937442239949256]
本研究では,Large Language Models パイプライン LLM-GNN を用いたグラフ上でのラベルなしノード分類を導入する。
制限を緩和しながら、GNNとLLMの長所を反復する。
特に、LLM-GNNは1ドル未満の大規模データセットで74.9%の精度を達成できる。
論文 参考訳(メタデータ) (2023-10-07T03:14:11Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - Community Detection for Access-Control Decisions: Analysing the Role of
Homophily and Information Diffusion in Online Social Networks [0.0]
ACL(Access-Control Lists)は、オンラインソーシャルネットワーク(OSN)の最も重要なプライバシー機能のひとつである。
本研究は,OSNにおけるACLの自動生成におけるコミュニティ検出アルゴリズムの利用について検討する。
論文 参考訳(メタデータ) (2021-04-19T08:49:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。