論文の概要: From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs
- arxiv url: http://arxiv.org/abs/2504.13471v2
- Date: Thu, 24 Apr 2025 07:30:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.601828
- Title: From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs
- Title(参考訳): 大型から超小型へ:低コストLCMのエンドツーエンド最適化
- Authors: Jiliang Ni, Jiachen Pu, Zhongyi Yang, Kun Zhou, Hui Wang, Xiaoliang Xiao, Dakui Wang, Xin Li, Jingfeng Luo, Conggang Hu,
- Abstract要約: 大規模言語モデル(LLM)は、非常に高度な人工知能を持つ。
本稿では,3段階の低コストエンドツーエンドLCMデプロイメントパイプラインを提案する。
我々のアプローチは、オンラインシステムにおけるコストとパフォーマンスに最適化された超小型モデルを生み出します。
- 参考スコア(独自算出の注目度): 23.253571170594455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Large Language Models (LLMs) have significantly advanced artificial intelligence by optimizing traditional Natural Language Processing (NLP) pipelines, improving performance and generalization. This has spurred their integration into various systems. Many NLP systems, including ours, employ a "one-stage" pipeline directly incorporating LLMs. While effective, this approach incurs substantial costs and latency due to the need for large model parameters to achieve satisfactory outcomes. This paper introduces a three-stage cost-efficient end-to-end LLM deployment pipeline-including prototyping, knowledge transfer, and model compression-to tackle the cost-performance dilemma in LLM-based frameworks. Our approach yields a super tiny model optimized for cost and performance in online systems, simplifying the system architecture. Initially, by transforming complex tasks into a function call-based LLM-driven pipeline, an optimal performance prototype system is constructed to produce high-quality data as a teacher model. The second stage combines techniques like rejection fine-tuning, reinforcement learning, and knowledge distillation to transfer knowledge to a smaller 0.5B student model, delivering effective performance at minimal cost. The final stage applies quantization and pruning to extremely compress models to 0.4B, achieving ultra-low latency and cost. The framework's modular design and cross-domain capabilities suggest potential applicability in other NLP areas.
- Abstract(参考訳): 近年、Large Language Models (LLM) は、従来の自然言語処理(NLP)パイプラインを最適化し、性能と一般化を改善し、人工知能を著しく進歩させてきた。
これにより、様々なシステムへの統合が加速した。
当社を含む多くのNLPシステムは、LSMを直接組み込んだ"ワンステージ"パイプラインを採用している。
このアプローチは有効であるが、十分な結果を得るためには大きなモデルパラメータを必要とするため、かなりのコストと遅延が発生する。
本稿では,LLM ベースのフレームワークにおけるコストパフォーマンスジレンマに対処するために,プロトタイピング,知識伝達,モデル圧縮を含む3段階のコスト効率のエンドツーエンド LLM デプロイメントパイプラインを提案する。
我々のアプローチは、オンラインシステムにおけるコストとパフォーマンスに最適化された超小型モデルをもたらし、システムアーキテクチャを単純化する。
まず,複雑なタスクを関数呼び出し型LLM駆動パイプラインに変換することで,教師モデルとして高品質なデータを生成するための最適なパフォーマンスプロトタイプシステムを構築した。
第2段階では、拒否微調整、強化学習、知識蒸留といった技術を組み合わせて、より小さな0.5Bの学生モデルに知識を伝達し、最小コストで効果的なパフォーマンスを提供する。
最終段階は量子化とプルーニングを極端に圧縮されたモデルに適用し、超低レイテンシとコストを実現する。
このフレームワークのモジュール設計とクロスドメイン機能は、他のNLP領域に適用可能であることを示唆している。
関連論文リスト
- Cost-Optimal Grouped-Query Attention for Long-Context LLMs [64.90662568387683]
効率的なTransformerベースの大規模言語モデル(LLM)の構築が最近研究の焦点となっている。
モデル性能,計算コスト,メモリコストの面で,パラメータサイズ,コンテキスト長,アテンションヘッド構成の異なるモデルを比較した。
本研究は, 十分に長いシーケンスを処理した場合, より少ないアテンションヘッドを持つモデルでは, 計算コストとメモリコストの低減を図りながら, 損失を低減できることを示した。
論文 参考訳(メタデータ) (2025-03-12T17:50:42Z) - Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud [12.651588927599441]
モデル微調整の効率を大幅に向上するために,データ拡張モデル群を提案する。
これらのモデルは十分に小さなLLMに基づいて訓練され、推論コストの低い重要な機能をサポートする。
実験と応用研究は、我々のアプローチの有効性を証明した。
論文 参考訳(メタデータ) (2024-12-06T09:04:12Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - Achieving Peak Performance for Large Language Models: A Systematic Review [0.0]
大規模言語モデル(LLM)は自然言語処理(NLP)において顕著な成功を収めた
モデルが1兆のパラメータ範囲に成長するにつれて、計算とメモリのコストは大幅に増加する。
これにより、多くの研究者がこれらのモデルのトレーニングや適用に必要なリソースにアクセスするのが難しくなる。
論文 参考訳(メタデータ) (2024-09-07T13:57:41Z) - Understanding the Performance and Estimating the Cost of LLM Fine-Tuning [9.751868268608675]
コスト効率の良い特定のタスクのための微調整大型言語モデル(LLM)。
本稿では,Sparse Mixture of Experts (MoE)をベースとしたLLMファインチューニングを特徴付ける。
また,クラウド上でのLCM微調整のコストを推定するための解析モデルを開発し,検証する。
論文 参考訳(メタデータ) (2024-08-08T16:26:07Z) - Save It All: Enabling Full Parameter Tuning for Federated Large Language Models via Cycle Block Gradient Descent [15.463595798992621]
大規模言語モデル(LLM)はディープラーニングパラダイムに革命をもたらし、幅広いタスクで印象的な結果をもたらしている。
既存のソリューションは、モデル全体がトレーニングのために交換されるという非現実的な仮定を定めている。
本稿では,資源消費を最小限に抑えつつ,FLにおけるLLMの効率的なトレーニングと微調整を行う新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-17T03:49:44Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクの性能を大幅に向上させた。
高性能LLMの配備は、主にモデル性能の向上を目的としたパラメータの増大により、かなりのコストがかかる。
SMARTは,NLPタスクの推論コストを最小限に抑えつつ,十分な結果品質を確保するために設計された新しいフレームワークである。
論文 参考訳(メタデータ) (2024-03-11T17:45:47Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
近年のLarge Language Models (LLM) 開発において,"Bigger the Better" が主流となっている。
本稿では、リソース制約のあるデバイスに対して、正確かつ効率的なSLM(Small Language Models)を設計する上での課題に対処し、"less is more"パラダイムについて考察する。
論文 参考訳(メタデータ) (2024-02-26T18:59:03Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。