論文の概要: MLEP: Multi-granularity Local Entropy Patterns for Universal AI-generated Image Detection
- arxiv url: http://arxiv.org/abs/2504.13726v1
- Date: Fri, 18 Apr 2025 14:50:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 15:24:07.816549
- Title: MLEP: Multi-granularity Local Entropy Patterns for Universal AI-generated Image Detection
- Title(参考訳): MLEP: ユニバーサルAI生成画像検出のための多粒度局所エントロピーパターン
- Authors: Lin Yuan, Xiaowan Li, Yan Zhang, Jiawei Zhang, Hongbo Li, Xinbo Gao,
- Abstract要約: AI生成画像(AIGI)を効果的に検出する手法が緊急に必要である。
マルチグラニュラリティ局所エントロピーパターン (MLEP) を提案する。
MLEPは、画像のセマンティクスを著しく破壊し、潜在的なコンテンツバイアスを低減しながら、次元とスケールの画素関係を包括的にキャプチャする。
- 参考スコア(独自算出の注目度): 44.40575446607237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in image generation technologies have raised significant concerns about their potential misuse, such as producing misinformation and deepfakes. Therefore, there is an urgent need for effective methods to detect AI-generated images (AIGI). Despite progress in AIGI detection, achieving reliable performance across diverse generation models and scenes remains challenging due to the lack of source-invariant features and limited generalization capabilities in existing methods. In this work, we explore the potential of using image entropy as a cue for AIGI detection and propose Multi-granularity Local Entropy Patterns (MLEP), a set of entropy feature maps computed across shuffled small patches over multiple image scaled. MLEP comprehensively captures pixel relationships across dimensions and scales while significantly disrupting image semantics, reducing potential content bias. Leveraging MLEP, a robust CNN-based classifier for AIGI detection can be trained. Extensive experiments conducted in an open-world scenario, evaluating images synthesized by 32 distinct generative models, demonstrate significant improvements over state-of-the-art methods in both accuracy and generalization.
- Abstract(参考訳): 画像生成技術の進歩は、誤情報やディープフェイクなどの潜在的な誤用について、重大な懸念を提起している。
したがって、AI生成画像(AIGI)を検出する効果的な方法が緊急に必要である。
AIGI検出の進歩にもかかわらず、様々な世代モデルやシーンにわたる信頼性の高いパフォーマンスを達成することは、ソース不変の機能の欠如と、既存のメソッドでの限定的な一般化能力のため、依然として困難である。
本研究では,画像エントロピーをAIGI検出の手がかりとして用いる可能性を探究し,複数の画像スケール上のシャッフルされた小さなパッチにまたがるエントロピー特徴写像である多粒性局所エントロピーパターン(MLEP)を提案する。
MLEPは、画像のセマンティクスを著しく破壊し、潜在的なコンテンツバイアスを低減しながら、次元とスケールの画素関係を包括的にキャプチャする。
AIGI検出のための堅牢なCNNベースの分類器であるMLEPを活用することができる。
32個の異なる生成モデルによって合成された画像を評価するオープンワールドシナリオで実施された大規模な実験は、精度と一般化の両方において最先端の手法よりも大幅に改善されたことを示す。
関連論文リスト
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Addressing Vulnerabilities in AI-Image Detection: Challenges and Proposed Solutions [0.0]
本研究では,AI生成画像の検出における畳み込みニューラルネットワーク(CNN)とDenseNetアーキテクチャの有効性を評価する。
本稿では,ガウスのぼかしやテキスト変更,ローランド適応(LoRA)などの更新や修正が検出精度に与える影響を解析する。
この発見は、現在の検出方法の脆弱性を強調し、AI画像検出システムの堅牢性と信頼性を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2024-11-26T06:35:26Z) - MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
拡散モデル(DM)は画像生成に革命をもたらし、様々な分野にまたがる高品質な画像を生成する。
超現実的画像を作成する能力は、現実的コンテンツと合成的コンテンツを区別する上で大きな課題となる。
この研究は、CLIPモデルによって抽出された画像とテキストの特徴をMLP(Multilayer Perceptron)分類器と統合する堅牢な検出フレームワークを導入する。
論文 参考訳(メタデータ) (2024-04-19T14:30:41Z) - ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale [20.12991230544801]
生成画像モデルは、現実的な画像を生成するための有望な技術として登場してきた。
ユーザーがAI生成画像のパターンを効果的に識別し理解できるようにするための需要が高まっている。
我々はAI生成画像の異なるパターンを自動的に抽出する対話型可視化システムASAPを開発した。
論文 参考訳(メタデータ) (2024-04-03T18:20:41Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Fusing Global and Local Features for Generalized AI-Synthesized Image
Detection [31.35052580048599]
画像全体からのグローバル空間情報と,新しいパッチ選択モジュールによって選択されたパッチからの局所的な情報的特徴を結合する2分岐モデルを設計する。
さまざまなオブジェクトと解像度を持つ19のモデルで合成された非常に多様なデータセットを収集し、モデルを評価する。
論文 参考訳(メタデータ) (2022-03-26T01:55:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。