論文の概要: Predictors of Childhood Vaccination Uptake in England: An Explainable Machine Learning Analysis of Longitudinal Regional Data (2021-2024)
- arxiv url: http://arxiv.org/abs/2504.13755v1
- Date: Fri, 18 Apr 2025 15:41:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 15:08:42.235498
- Title: Predictors of Childhood Vaccination Uptake in England: An Explainable Machine Learning Analysis of Longitudinal Regional Data (2021-2024)
- Title(参考訳): イングランドにおける小児ワクチン接種状況の予測 : 縦断的地域データを用いた説明可能な機械学習分析(2021-2024)
- Authors: Amin Noroozi, Sidratul Muntaha Esha, Mansoureh Ghari,
- Abstract要約: 小児予防接種は公衆衛生の基盤であるが、イングランド全土で予防接種が継続されている。
これまでの研究は主に断面データと伝統的な統計手法に依存していた。
2021年から2024年にかけて、イングランドの150地区にまたがる小児ワクチン接種状況の縦断的機械学習解析を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Childhood vaccination is a cornerstone of public health, yet disparities in vaccination coverage persist across England. These disparities are shaped by complex interactions among various factors, including geographic, demographic, socioeconomic, and cultural (GDSC) factors. Previous studies mostly rely on cross-sectional data and traditional statistical approaches that assess individual or limited sets of variables in isolation. Such methods may fall short in capturing the dynamic and multivariate nature of vaccine uptake. In this paper, we conducted a longitudinal machine learning analysis of childhood vaccination coverage across 150 districts in England from 2021 to 2024. Using vaccination data from NHS records, we applied hierarchical clustering to group districts by vaccination coverage into low- and high-coverage clusters. A CatBoost classifier was then trained to predict districts' vaccination clusters using their GDSC data. Finally, the SHapley Additive exPlanations (SHAP) method was used to interpret the predictors' importance. The classifier achieved high accuracies of 92.1, 90.6, and 86.3 in predicting districts' vaccination clusters for the years 2021-2022, 2022-2023, and 2023-2024, respectively. SHAP revealed that geographic, cultural, and demographic variables, particularly rurality, English language proficiency, the percentage of foreign-born residents, and ethnic composition, were the most influential predictors of vaccination coverage, whereas socioeconomic variables, such as deprivation and employment, consistently showed lower importance, especially in 2023-2024. Surprisingly, rural districts were significantly more likely to have higher vaccination rates. Additionally, districts with lower vaccination coverage had higher populations whose first language was not English, who were born outside the UK, or who were from ethnic minority groups.
- Abstract(参考訳): 小児予防接種は公衆衛生の基盤であるが、イングランド全土で予防接種が継続されている。
これらの格差は、地理的、人口統計学的、社会経済的、文化的(GDSC)要因など、様々な要因の複雑な相互作用によって形成される。
従来の研究は主に、個別または限られた変数の集合を分離して評価する断面データと伝統的な統計的アプローチに依存していた。
このような方法は、ワクチン摂取の動的および多変量の性質を捉えるのに不足する可能性がある。
本稿では,2021年から2024年までのイングランド150地区における小児ワクチン接種状況の縦断的機械学習解析を行った。
NHSレコードからのワクチン接種データを用いて,低濃度・高濃度クラスタへの予防接種カバレッジによる階層的クラスタリングをグループ地区に適用した。
CatBoost分類器は、GDSCデータを使用して地区の予防接種クラスターを予測するために訓練された。
最後に,Shapley Additive exPlanations (SHAP)法を用いて予測器の重要性を解析した。
この分類器は、2021-2022年、2022-2023年、2023-2024年における地区の予防接種クラスターの予測において、92.1、90.6、86.3の精度を達成した。
SHAPは、地理的、文化的、人口統計学的な変数、特に農村性、英語の習熟度、外国生まれの住民の割合、民族構成が予防接種に関する最も影響力のある予測因子であることを明らかにした。
驚くべきことに、農村部は予防接種率が高い傾向にあった。
さらに、予防接種率の低い地区では、最初の言語は英語ではなく、イギリス国外で生まれたもの、あるいは少数民族の出身者が多い。
関連論文リスト
- Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - VaxxHesitancy: A Dataset for Studying Hesitancy towards COVID-19
Vaccination on Twitter [6.061534265076204]
新型コロナウイルス(COVID-19)ワクチン接種に対するユーザの態度を示す3,101件以上のツイートの新たなコレクションを作成します。
私たちの知る限りでは、ワクチンのヘシタシーを、予防的および抗ワクチン的スタンスとは異なるカテゴリとしてモデル化する最初のデータセットとモデルです。
論文 参考訳(メタデータ) (2023-01-17T02:00:31Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-12-16T13:57:41Z) - Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy
among Healthcare Workers [64.1526243118151]
医者は新型コロナウイルスワクチンに対して全体的に陽性であることがわかりました。
医師は新型ワクチンよりもワクチンの有効性を懸念している。
看護婦は子供に対する潜在的な副作用にもっと注意を払う。
論文 参考訳(メタデータ) (2022-09-11T14:22:16Z) - VacciNet: Towards a Smart Framework for Learning the Distribution Chain
Optimization of Vaccines for a Pandemic [0.0]
我々は、VacciNetと呼ぶ、教師付き学習と強化学習(RL)を活用する新しいフレームワークを提唱した。
RLは、国の州におけるワクチン接種需要を予測し、また、調達と供給の最小コストのために、州における最適なワクチン割り当てを提案することができる。
論文 参考訳(メタデータ) (2022-08-01T19:37:33Z) - Deep Learning Reveals Patterns of Diverse and Changing Sentiments
Towards COVID-19 Vaccines Based on 11 Million Tweets [3.319350419970857]
11,211,672人の新型コロナウイルス関連ツイートを2年間で2,203,681人を対象に分析した。
我々は、各ツイートの感情を自動的に検出するために、最先端モデルであるXLNetを用いてディープラーニング分類器を微調整した。
さまざまな人口集団のユーザーは、新型コロナウイルスワクチンに対する感情の異なるパターンを示した。
論文 参考訳(メタデータ) (2022-07-05T13:53:16Z) - Applying Machine Learning and AI Explanations to Analyze Vaccine
Hesitancy [0.0]
この論文は、人種、貧困、政治、年齢がアメリカ合衆国郡の予防接種率に与える影響を定量化している。
影響要因の影響は、異なる地理的に普遍的に同じではないことが明らかである。
論文 参考訳(メタデータ) (2022-01-07T22:50:17Z) - Mining Trends of COVID-19 Vaccine Beliefs on Twitter with Lexical
Embeddings [0.8808021343665321]
新型コロナウイルスワクチン接種に関するTwitter投稿のコーパスを抽出しました。
語彙カテゴリーの2つのクラス — 感情と影響要因 — を作成しました。
ワクチンに対するためらいのようなネガティブな感情は、健康関連の効果や誤った情報と高い相関がある。
論文 参考訳(メタデータ) (2021-04-02T16:13:16Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
重症急性呼吸器症候群2号(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)の流行は、世界中の人々の生活や社会に影響を与え続けている。
私たちは複数のデータソース、すなわちPubMedとArXivを使用し、現在のCOVID-19研究の風景を特徴づけるために、いくつかの機械学習モデルを構築しました。
調査の結果,PubMedとArXivで利用可能な研究の種類は異なることが確認された。
論文 参考訳(メタデータ) (2020-07-22T18:02:39Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z) - Falling into the Echo Chamber: the Italian Vaccination Debate on Twitter [65.7192861893042]
われわれは、Twitter上での予防接種に関する議論が、予防接種ヘシタントに対する潜在的な不安にどのように影響するかを調査する。
予防接種懐疑派や擁護派が独自の「エチョ室」に居住していることが判明した。
これらのエコーチャンバーの中心には熱心な支持者がいて、高い精度のネットワークとコンテンツベースの分類器を構築しています。
論文 参考訳(メタデータ) (2020-03-26T13:55:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。