論文の概要: On the Relationship Between Robustness and Expressivity of Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2504.13786v1
- Date: Fri, 18 Apr 2025 16:38:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 14:51:49.015774
- Title: On the Relationship Between Robustness and Expressivity of Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのロバスト性と表現性の関係について
- Authors: Lorenz Kummer, Wilfried N. Gansterer, Nils M. Kriege,
- Abstract要約: グラフニューラルネットワーク(GNN)はビットフリップ攻撃(BFA)に対して脆弱である
建築的特徴, グラフ特性, 相互作用の影響を研究するための分析フレームワークを提案する。
我々は、データセット上でGNN表現性を劣化させるために必要なビットフリップ数に関する理論的境界を導出する。
- 参考スコア(独自算出の注目度): 7.161966906570077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the vulnerability of Graph Neural Networks (GNNs) to bit-flip attacks (BFAs) by introducing an analytical framework to study the influence of architectural features, graph properties, and their interaction. The expressivity of GNNs refers to their ability to distinguish non-isomorphic graphs and depends on the encoding of node neighborhoods. We examine the vulnerability of neural multiset functions commonly used for this purpose and establish formal criteria to characterize a GNN's susceptibility to losing expressivity due to BFAs. This enables an analysis of the impact of homophily, graph structural variety, feature encoding, and activation functions on GNN robustness. We derive theoretical bounds for the number of bit flips required to degrade GNN expressivity on a dataset, identifying ReLU-activated GNNs operating on highly homophilous graphs with low-dimensional or one-hot encoded features as particularly susceptible. Empirical results using ten real-world datasets confirm the statistical significance of our key theoretical insights and offer actionable results to mitigate BFA risks in expressivity-critical applications.
- Abstract(参考訳): 本稿では,グラフニューラルネットワーク(GNN)のビットフリップ攻撃(BFA)に対する脆弱性について,アーキテクチャ特性,グラフ特性,およびそれらの相互作用の影響を解析的枠組みを用いて検討する。
GNNの表現性は、非同型グラフを区別する能力であり、ノード近傍の符号化に依存する。
この目的のために一般的に使用される神経多セット関数の脆弱性について検討し、BFAによる表現力の喪失に対するGNNの感受性を特徴付けるための正式な基準を確立する。
これにより、GNNのロバスト性に対するホモフィリー、グラフ構造多様性、特徴符号化、アクティベーション関数の影響を分析することができる。
データセット上でGNN表現性を低下させるために必要なビットフリップ数の理論的境界を導出し、低次元あるいは1ホットな符号化特徴を持つ高ホモフィル性グラフ上で動作しているReLU活性化GNNを特に感受性のあるものとして同定する。
10個の実世界のデータセットを用いた実験結果から、我々の重要な理論的洞察の統計的意義を確認し、表現力クリティカルなアプリケーションにおけるBFAリスクを軽減するために実行可能な結果を提供する。
関連論文リスト
- On the Computational Capability of Graph Neural Networks: A Circuit Complexity Bound Perspective [28.497567290882355]
グラフニューラルネットワーク(GNN)は、リレーショナルデータに対する学習と推論の標準的なアプローチとなっている。
本稿では,回路複雑性のレンズによるGNNの計算限界について検討する。
具体的には、共通GNNアーキテクチャの回路複雑性を分析し、定数層、線形またはサブ線形埋め込みサイズ、精度の制約の下で、GNNはグラフ接続やグラフ同型といった重要な問題を解くことができないことを証明している。
論文 参考訳(メタデータ) (2025-01-11T05:54:10Z) - On the Impact of Feature Heterophily on Link Prediction with Graph Neural Networks [12.26334940017605]
ネットワーク内の接続ノードが異なるクラスラベルや異種特徴を持つ傾向は、多くのグラフニューラルネットワーク(GNN)モデルでは難しいと認識されている。
本稿では,リンク予測タスクに着目し,ノード特徴がGNN性能に与える影響を系統的に解析する。
論文 参考訳(メタデータ) (2024-09-26T02:19:48Z) - On the Topology Awareness and Generalization Performance of Graph Neural Networks [6.598758004828656]
我々は,GNNのトポロジ的認識をいかなるトポロジ的特徴においても特徴付けるための包括的枠組みを導入する。
本研究は,各ベンチマークデータセットの経路距離を最短とする内在グラフを用いたケーススタディである。
論文 参考訳(メタデータ) (2024-03-07T13:33:30Z) - Rethinking Causal Relationships Learning in Graph Neural Networks [24.7962807148905]
本稿では,GNNの因果学習能力を高めるために,軽量で適応可能なGNNモジュールを提案する。
提案モジュールの有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-12-15T08:54:32Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
トレーニンググラフとテストグラフの分散シフトを考慮せずにグラフニューラルネットワーク(GNN)を提案する。
このような環境では、GNNは、たとえ素早い相関であるとしても、予測のためのトレーニングセットに存在する微妙な統計的相関を利用する傾向がある。
本稿では,スプリアス相関の影響を排除するため,StableGNNと呼ばれる一般的な因果表現フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:57:18Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。