Generative Framework for Personalized Persuasion: Inferring Causal, Counterfactual, and Latent Knowledge
- URL: http://arxiv.org/abs/2504.13904v1
- Date: Tue, 08 Apr 2025 15:33:54 GMT
- Title: Generative Framework for Personalized Persuasion: Inferring Causal, Counterfactual, and Latent Knowledge
- Authors: Donghuo Zeng, Roberto Legaspi, Yuewen Sun, Xinshuai Dong, Kazushi Ikeda, Peter Spirtes, Kun Zhang,
- Abstract summary: We create hypothetical scenarios to examine the effects of alternative system responses.<n>We employ causal discovery to identify strategy-level causal relationships among user and system utterances.<n>We optimize policies for selecting system responses based on counterfactual data.
- Score: 14.324214906731923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We hypothesize that optimal system responses emerge from adaptive strategies grounded in causal and counterfactual knowledge. Counterfactual inference allows us to create hypothetical scenarios to examine the effects of alternative system responses. We enhance this process through causal discovery, which identifies the strategies informed by the underlying causal structure that govern system behaviors. Moreover, we consider the psychological constructs and unobservable noises that might be influencing user-system interactions as latent factors. We show that these factors can be effectively estimated. We employ causal discovery to identify strategy-level causal relationships among user and system utterances, guiding the generation of personalized counterfactual dialogues. We model the user utterance strategies as causal factors, enabling system strategies to be treated as counterfactual actions. Furthermore, we optimize policies for selecting system responses based on counterfactual data. Our results using a real-world dataset on social good demonstrate significant improvements in persuasive system outcomes, with increased cumulative rewards validating the efficacy of causal discovery in guiding personalized counterfactual inference and optimizing dialogue policies for a persuasive dialogue system.
Related papers
- Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models [70.180385882195]
This paper introduces a personality-aware user simulation for Conversational Recommender Systems (CRSs)<n>The user agent induces customizable personality traits and preferences, while the system agent possesses the persuasion capability to simulate realistic interaction in CRSs.<n> Experimental results demonstrate that state-of-the-art LLMs can effectively generate diverse user responses aligned with specified personality traits.
arXiv Detail & Related papers (2025-04-09T13:21:17Z) - Causal Discovery and Counterfactual Reasoning to Optimize Persuasive Dialogue Policies [14.324214906731923]
We use causal discovery and counterfactual reasoning to optimize system persuasion capability and outcomes.<n>Our experiments with the PersuasionForGood dataset show measurable improvements in persuasion outcomes.
arXiv Detail & Related papers (2025-03-19T06:06:10Z) - Counterfactual Reasoning Using Predicted Latent Personality Dimensions for Optimizing Persuasion Outcome [13.731895847081953]
We present a novel approach that tracks a user's latent personality dimensions (LPDs) during ongoing persuasion conversation.
We generate tailored counterfactual utterances based on these LPDs to optimize the overall persuasion outcome.
arXiv Detail & Related papers (2024-04-21T23:03:47Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
We have compiled and expanded upon a new dataset called CausalDialogue through crowd-sourcing.
This dataset includes multiple cause-effect pairs within a directed acyclic graph (DAG) structure.
We propose a causality-enhanced method called Exponential Average Treatment Effect (ExMATE) to enhance the impact of causality at the utterance level in training neural conversation models.
arXiv Detail & Related papers (2022-12-20T18:31:50Z) - Social Influence Dialogue Systems: A Scoping Survey of the Efforts
Towards Influence Capabilities of Dialogue Systems [50.57882213439553]
Social influence dialogue systems are capable of persuasion, negotiation, and therapy.
There exists no formal definition or category for dialogue systems with these skills.
This study serves as a comprehensive reference for social influence dialogue systems to inspire more dedicated research and discussion in this emerging area.
arXiv Detail & Related papers (2022-10-11T17:57:23Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Heterogeneous Demand Effects of Recommendation Strategies in a Mobile
Application: Evidence from Econometric Models and Machine-Learning
Instruments [73.7716728492574]
We study the effectiveness of various recommendation strategies in the mobile channel and their impact on consumers' utility and demand levels for individual products.
We find significant differences in effectiveness among various recommendation strategies.
We develop novel econometric instruments that capture product differentiation (isolation) based on deep-learning models of user-generated reviews.
arXiv Detail & Related papers (2021-02-20T22:58:54Z) - Strategic Argumentation Dialogues for Persuasion: Framework and
Experiments Based on Modelling the Beliefs and Concerns of the Persuadee [6.091096843566857]
Two key dimensions for determining whether an argument is good in a particular dialogue are the degree to which the intended audience believes the argument and counterarguments, and the impact that the argument has on the concerns of the intended audience.
We present a framework for modelling persuadees in terms of their beliefs and concerns, and for harnessing these models in optimizing the choice of move in persuasion dialogues.
arXiv Detail & Related papers (2021-01-28T08:49:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.