Naming is framing: How cybersecurity's language problems are repeating in AI governance
- URL: http://arxiv.org/abs/2504.13957v1
- Date: Wed, 16 Apr 2025 20:58:26 GMT
- Title: Naming is framing: How cybersecurity's language problems are repeating in AI governance
- Authors: Liane Potter,
- Abstract summary: This paper argues that misnomers like cybersecurity and artificial intelligence (AI) are more than semantic quirks.<n>It argues that these misnomers carry significant governance risks by obscuring human agency, inflating expectations, and distorting accountability.<n>The paper advocates for a language-first approach to AI governance: one that interrogates dominant metaphors, foregrounds human roles, and co-develops a lexicon that is precise, inclusive, and reflexive.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Language is not neutral; it frames understanding, structures power, and shapes governance. This paper argues that misnomers like cybersecurity and artificial intelligence (AI) are more than semantic quirks; they carry significant governance risks by obscuring human agency, inflating expectations, and distorting accountability. Drawing on lessons from cybersecurity's linguistic pitfalls, such as the 'weakest link' narrative, this paper highlights how AI discourse is falling into similar traps with metaphors like 'alignment,' 'black box,' and 'hallucination.' These terms embed adversarial, mystifying, or overly technical assumptions into governance structures. In response, the paper advocates for a language-first approach to AI governance: one that interrogates dominant metaphors, foregrounds human roles, and co-develops a lexicon that is precise, inclusive, and reflexive. This paper contends that linguistic reform is not peripheral to governance but central to the construction of transparent, equitable, and anticipatory regulatory frameworks.
Related papers
- Cognitive Castes: Artificial Intelligence, Epistemic Stratification, and the Dissolution of Democratic Discourse [0.0]
The argument traces how contemporary AI systems amplify the reasoning capacity of individuals equipped with abstraction, symbolic logic, and adversarial interrogation.<n>The proposed response is not technocratic regulation, nor universal access, but the reconstruction of rational autonomy as a civic mandate.
arXiv Detail & Related papers (2025-07-16T08:46:45Z) - Infrastructuring Contestability: A Framework for Community-Defined AI Value Pluralism [0.0]
The proliferation of AI-driven systems presents a challenge to Human-Computer Interaction and Computer-Supported Cooperative Work.<n>Current approaches to value alignment, which rely on centralized, top-down definitions, lack the mechanisms for meaningful contestability.<n>This paper introduces Community-Defined AI Value Pluralism, a socio-technical framework that addresses this gap.
arXiv Detail & Related papers (2025-07-07T16:45:50Z) - Epistemic Scarcity: The Economics of Unresolvable Unknowns [0.0]
We argue that AI systems are incapable of performing the core functions of economic coordination.<n>We critique dominant ethical AI frameworks as extensions of constructivist rationalism.
arXiv Detail & Related papers (2025-07-02T08:46:24Z) - Resource Rational Contractualism Should Guide AI Alignment [69.07915246220985]
Contractualist alignment proposes grounding decisions in agreements that diverse stakeholders would endorse.<n>We propose Resource-Rationalism: a framework where AI systems approximate the agreements rational parties would form.<n>An RRC-aligned agent would not only operate efficiently, but also be equipped to dynamically adapt to and interpret the ever-changing human social world.
arXiv Detail & Related papers (2025-06-20T18:57:13Z) - Authoritarian Recursions: How Fiction, History, and AI Reinforce Control in Education, Warfare, and Discourse [0.0]
Article theorizes how AI systems consolidate institutional control across education, warfare, and digital discourse.<n>Case studies are analyzed alongside cultural imaginaries such as Orwell's textitNineteen Eighty-Four, Skynet, and textitBlack Mirror, used as tools to surface ethical blind spots.
arXiv Detail & Related papers (2025-04-12T01:01:26Z) - Generative AI as Digital Media [0.0]
Generative AI is frequently portrayed as revolutionary or even apocalyptic.<n>This essay argues that such views are misguided.<n>Instead, generative AI should be understood as an evolutionary step in the broader algorithmic media landscape.
arXiv Detail & Related papers (2025-03-09T08:58:17Z) - Alignment, Agency and Autonomy in Frontier AI: A Systems Engineering Perspective [0.0]
Concepts of alignment, agency, and autonomy have become central to AI safety, governance, and control.<n>This paper traces the historical, philosophical, and technical evolution of these concepts, emphasizing how their definitions influence AI development, deployment, and oversight.
arXiv Detail & Related papers (2025-02-20T21:37:20Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - False Sense of Security in Explainable Artificial Intelligence (XAI) [3.298597939573779]
We argue that AI regulations and current market conditions threaten effective AI governance and safety.
Unless governments explicitly tackle the issue of explainability through clear legislative and policy statements, AI governance risks becoming a vacuous "box-ticking" exercise.
arXiv Detail & Related papers (2024-05-06T20:02:07Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - AI Alignment: A Comprehensive Survey [69.61425542486275]
AI alignment aims to make AI systems behave in line with human intentions and values.<n>We identify four principles as the key objectives of AI alignment: Robustness, Interpretability, Controllability, and Ethicality.<n>We decompose current alignment research into two key components: forward alignment and backward alignment.
arXiv Detail & Related papers (2023-10-30T15:52:15Z) - The Language Labyrinth: Constructive Critique on the Terminology Used in
the AI Discourse [0.0]
This paper claims, that AI debates are still characterised by a lack of critical distance to metaphors like 'training', 'learning' or 'deciding'
As consequence, reflections regarding responsibility or potential use-cases are greatly distorted.
It is a conceptual work at the intersection of critical computer science and philosophy of language.
arXiv Detail & Related papers (2023-07-18T14:32:21Z) - Natural Language Decompositions of Implicit Content Enable Better Text Representations [52.992875653864076]
We introduce a method for the analysis of text that takes implicitly communicated content explicitly into account.<n>We use a large language model to produce sets of propositions that are inferentially related to the text that has been observed.<n>Our results suggest that modeling the meanings behind observed language, rather than the literal text alone, is a valuable direction for NLP.
arXiv Detail & Related papers (2023-05-23T23:45:20Z) - Users are the North Star for AI Transparency [111.5679109784322]
Despite widespread calls for transparent artificial intelligence systems, the term is too overburdened with disparate meanings to express precise policy aims or to orient concrete lines of research.
Part of why this happens is that a clear ideal of AI transparency goes unsaid in this body of work.
We explicitly name such a north star -- transparency that is user-centered, user-appropriate, and honest.
arXiv Detail & Related papers (2023-03-09T18:53:29Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Artificial Intelligence and Structural Injustice: Foundations for
Equity, Values, and Responsibility [0.0]
This chapter argues for a structural injustice approach to the governance of AI.
The analytical component consists of structural explanations that are well-known in the social sciences.
The evaluative component is a theory of justice.
arXiv Detail & Related papers (2022-05-05T01:21:47Z) - Semantics-Aware Inferential Network for Natural Language Understanding [79.70497178043368]
We propose a Semantics-Aware Inferential Network (SAIN) to meet such a motivation.
Taking explicit contextualized semantics as a complementary input, the inferential module of SAIN enables a series of reasoning steps over semantic clues.
Our model achieves significant improvement on 11 tasks including machine reading comprehension and natural language inference.
arXiv Detail & Related papers (2020-04-28T07:24:43Z) - Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation [49.671882751569534]
We develop SynQG, a set of transparent syntactic rules which transform declarative sentences into question-answer pairs.
We utilize PropBank argument descriptions and VerbNet state predicates to incorporate shallow semantic content.
In order to improve syntactic fluency and eliminate grammatically incorrect questions, we employ back-translation over the output of these syntactic rules.
arXiv Detail & Related papers (2020-04-18T19:57:39Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
It appears that the area of AI that is most analogous to the behaviour of economic entities is that of morally good decision-making.
Recent successes of deep learning for AI suggest that more implicit specifications work better than explicit ones for solving such problems.
arXiv Detail & Related papers (2019-12-29T17:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.