論文の概要: CONTINA: Confidence Interval for Traffic Demand Prediction with Coverage Guarantee
- arxiv url: http://arxiv.org/abs/2504.13961v1
- Date: Thu, 17 Apr 2025 01:14:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 08:17:30.180603
- Title: CONTINA: Confidence Interval for Traffic Demand Prediction with Coverage Guarantee
- Title(参考訳): CONTINA:Coverage Guaranteeによる交通需要予測の信頼区間
- Authors: Chao Yang, Xiannan Huang, Shuhan Qiu, Yan Cheng,
- Abstract要約: 交通システムの運用には,短期的な交通需要予測が不可欠である。
共有自転車のリバランシングやタクシーの配車といった交通業務のモデルの多くは、将来の需要の不確実性を考慮している。
既存の信頼区間モデリングの方法は、不規則なトラフィックパターンや正しいモデル仕様といった厳密な仮定に依存している。
- 参考スコア(独自算出の注目度): 4.88890338021936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate short-term traffic demand prediction is critical for the operation of traffic systems. Besides point estimation, the confidence interval of the prediction is also of great importance. Many models for traffic operations, such as shared bike rebalancing and taxi dispatching, take into account the uncertainty of future demand and require confidence intervals as the input. However, existing methods for confidence interval modeling rely on strict assumptions, such as unchanging traffic patterns and correct model specifications, to guarantee enough coverage. Therefore, the confidence intervals provided could be invalid, especially in a changing traffic environment. To fill this gap, we propose an efficient method, CONTINA (Conformal Traffic Intervals with Adaptation) to provide interval predictions that can adapt to external changes. By collecting the errors of interval during deployment, the method can adjust the interval in the next step by widening it if the errors are too large or shortening it otherwise. Furthermore, we theoretically prove that the coverage of the confidence intervals provided by our method converges to the target coverage level. Experiments across four real-world datasets and prediction models demonstrate that the proposed method can provide valid confidence intervals with shorter lengths. Our method can help traffic management personnel develop a more reasonable and robust operation plan in practice. And we release the code, model and dataset in \href{ https://github.com/xiannanhuang/CONTINA/}{ Github}.
- Abstract(参考訳): 交通システムの運用には,正確な短期交通需要予測が不可欠である。
点推定に加えて、予測の信頼区間も非常に重要である。
共有自転車のリバランシングやタクシーの配車といった交通業務のモデルの多くは、将来の需要の不確実性を考慮しており、入力として信頼区間を必要とする。
しかし、信頼区間モデリングのための既存の手法は、十分なカバレッジを保証するために、トラフィックパターンの変動や正しいモデル仕様といった厳密な仮定に依存している。
したがって、特に変化する交通環境において、提供された信頼区間は無効になる可能性がある。
このギャップを埋めるために、外部変化に適応可能な区間予測を提供するための効率的なCONTINA(Conformal Traffic Intervals with Adaptation)を提案する。
配置中の間隔の誤差を収集することにより、エラーが大きすぎる場合や、それ以外を短縮する場合に拡大することで、次のステップで間隔を調整することができる。
さらに,提案手法によって提供される信頼区間のカバレッジが対象のカバレッジレベルに収束することが理論的に証明された。
4つの実世界のデータセットと予測モデルにまたがる実験により,提案手法は短い長さで有効な信頼区間を提供できることを示した。
本手法は,交通管理担当者が実際により合理的でロバストな運用計画を策定する上で有効である。
そして、コード、モデル、データセットを \href{ https://github.com/xiannanhuang/CONTINA/}{ Github} でリリースします。
関連論文リスト
- Reliable Probabilistic Human Trajectory Prediction for Autonomous Applications [1.8294777056635267]
車両システムは信頼性、正確、高速、資源効率、スケーラブル、低遅延軌道予測を必要とする。
本稿では,これらの要求に対処する軽量な手法として,Long Short-Term Memory と Mixture Density Networks を提案する。
自動運転車アプリケーションにおける人体軌道予測の必須要件について考察し,交通関連データセットを用いて本手法の性能を実証する。
論文 参考訳(メタデータ) (2024-10-09T14:08:39Z) - Causally-Aware Spatio-Temporal Multi-Graph Convolution Network for Accurate and Reliable Traffic Prediction [5.200012764049096]
本研究は,高精度かつ信頼性の高い予測を行うための高度な深層学習モデルを実証するために,時間的問題-トラヒック予測の事例に焦点を当てた。
本稿では,3つの主要コンポーネントを有効活用し,高精度かつ信頼性の高いトラフィック予測を行う,エンドツーエンドのトラフィック予測フレームワークを提案する。
2つの実世界の交通データセットの実験結果から,この手法は予測精度においていくつかの最先端モデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-08-23T14:35:54Z) - A Comparative Study of Loss Functions: Traffic Predictions in Regular
and Congestion Scenarios [0.0]
本稿では、重み解析と不均衡な分類問題から着想を得た種々の損失関数を探索し、この問題に対処する。
平均絶対誤差(MAE)を最適化する場合,MAE-Focal Loss関数が最も有効であることがわかった。
本研究は,混雑による急激な速度変化を予測する深層学習モデルの能力を高める。
論文 参考訳(メタデータ) (2023-08-29T17:44:02Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
分散シフトへの対処は、現代の機械学習における中心的な課題の1つだ。
歴史的情報を適切に再利用するオンライン手法を提案する。
我々の密度比推定法は, ダイナミックなリセットバウンドを楽しむことにより, 良好に動作できることが証明された。
論文 参考訳(メタデータ) (2023-02-06T04:03:33Z) - Interpretable Machine Learning Models for Modal Split Prediction in
Transportation Systems [0.43012765978447565]
交通ネットワークにおけるモーダル分割予測は、交通渋滞の管理と交通サービスの信頼性向上にネットワークオペレーターをサポートする可能性がある。
本研究では,高次元の旅行時間データを用いて,旅行者の時間差予測の問題に焦点をあてる。
変数選択に様々な正則化手法を用いて、オーバーフィッティングを防止し、多重線形性の問題を解決する。
論文 参考訳(メタデータ) (2022-03-27T02:59:00Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
テスト時ドメイン適応は、ソースデータを使用しずに、ソース事前訓練されたモデルをターゲットドメインに適応することを目的としている。
CoTTAは実装が容易で、市販の事前訓練モデルに簡単に組み込むことができる。
論文 参考訳(メタデータ) (2022-03-25T11:42:02Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
本稿では、自動予測のための自動機械学習(Automatic Machine Learning for Conformal Prediction, AutoCP)というAutoMLフレームワークを提案する。
最高の予測モデルを選択しようとする慣れ親しんだAutoMLフレームワークとは異なり、AutoCPは、ユーザが指定したターゲットカバレッジ率を達成する予測間隔を構築する。
さまざまなデータセットでAutoCPをテストしたところ、ベンチマークアルゴリズムを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-06-24T23:13:11Z) - Parametric Bootstrap for Differentially Private Confidence Intervals [8.781431682774484]
本研究では,個人差分パラメトリック推定のための信頼区間を構築するための実用的,汎用的なアプローチを開発する。
パラメトリックブートストラップは単純で効果的な解であることがわかった。
論文 参考訳(メタデータ) (2020-06-14T00:08:19Z) - Optimal Change-Point Detection with Training Sequences in the Large and
Moderate Deviations Regimes [72.68201611113673]
本稿では,情報理論の観点から,新しいオフライン変化点検出問題について検討する。
基礎となる事前および変更後分布の知識は分かっておらず、利用可能なトレーニングシーケンスからのみ学習できると仮定する。
論文 参考訳(メタデータ) (2020-03-13T23:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。