論文の概要: CPR: Leveraging LLMs for Topic and Phrase Suggestion to Facilitate Comprehensive Product Reviews
- arxiv url: http://arxiv.org/abs/2504.13993v1
- Date: Fri, 18 Apr 2025 17:11:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 05:57:19.913954
- Title: CPR: Leveraging LLMs for Topic and Phrase Suggestion to Facilitate Comprehensive Product Reviews
- Title(参考訳): CPR: 包括的な製品レビューを支援するトピックとフレーズの提案にLLMを活用する
- Authors: Ekta Gujral, Apurva Sinha, Lishi Ji, Bijayani Sanghamitra Mishra,
- Abstract要約: 本稿では,ユーザによる洞察に富んだレビュー作成を支援する新しい手法であるCPRについて述べる。
まず、製品固有の評価用語をユーザに提示し、次に、これらの評価に基づいて目的のフレーズ提案を生成する。
我々は、テキストからテキストへのLLMを用いてCPRを評価し、その性能をWalmartの実際の顧客レビューと比較した。
- 参考スコア(独自算出の注目度): 0.5249805590164902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Consumers often heavily rely on online product reviews, analyzing both quantitative ratings and textual descriptions to assess product quality. However, existing research hasn't adequately addressed how to systematically encourage the creation of comprehensive reviews that capture both customers sentiment and detailed product feature analysis. This paper presents CPR, a novel methodology that leverages the power of Large Language Models (LLMs) and Topic Modeling to guide users in crafting insightful and well-rounded reviews. Our approach employs a three-stage process: first, we present users with product-specific terms for rating; second, we generate targeted phrase suggestions based on these ratings; and third, we integrate user-written text through topic modeling, ensuring all key aspects are addressed. We evaluate CPR using text-to-text LLMs, comparing its performance against real-world customer reviews from Walmart. Our results demonstrate that CPR effectively identifies relevant product terms, even for new products lacking prior reviews, and provides sentiment-aligned phrase suggestions, saving users time and enhancing reviews quality. Quantitative analysis reveals a 12.3% improvement in BLEU score over baseline methods, further supported by manual evaluation of generated phrases. We conclude by discussing potential extensions and future research directions.
- Abstract(参考訳): 消費者はしばしばオンライン製品レビューに大きく依存し、量的評価とテキストによる説明の両方を分析して製品の品質を評価する。
しかし、既存の研究は、顧客感情と詳細な製品特徴分析の両方を捉える包括的なレビューの作成を体系的に奨励する方法を適切に解決していない。
本稿では,LLM(Large Language Models)とトピックモデリング(Topic Modeling)の力を生かした新しい手法であるCPRについて述べる。
アプローチには3段階のプロセスが採用されている: まず、製品固有の評価用語をユーザに提示し、次に、これらの評価に基づいて目的のフレーズ提案を生成し、次に、トピックモデリングを通じてユーザ記述テキストを統合し、すべての重要な側面に対処する。
我々は、テキストからテキストへのLLMを用いてCPRを評価し、その性能をWalmartの実際の顧客レビューと比較した。
以上の結果から,CPRは,事前レビューを欠いた新製品であっても,関連商品の用語を効果的に識別し,ユーザ時間を節約し,レビュー品質の向上を図っている。
定量的分析により、BLEUスコアがベースライン法よりも12.3%向上し、さらに生成されたフレーズのマニュアル評価によって支持された。
将来的な拡張と今後の研究方向性について論じる。
関連論文リスト
- Identifying Aspects in Peer Reviews [61.374437855024844]
我々は、ピアレビューのコーパスからきめ細かいアスペクトを抽出するデータ駆動型スキーマを開発した。
我々は、アスペクトを付加したピアレビューのデータセットを導入し、コミュニティレベルのレビュー分析にどのように使用できるかを示す。
論文 参考訳(メタデータ) (2025-04-09T14:14:42Z) - Hold On! Is My Feedback Useful? Evaluating the Usefulness of Code Review Comments [0.0]
本稿では,コードレビューコメント(CRコメント)の有用性について,テキスト機能ベースおよび機能レスアプローチを用いて検討する。
我々のモデルは最先端の性能を達成することでベースラインを上回ります。
本分析では,ドメイン,プロジェクト,データセット,モデル,およびCRコメントの有用性を予測する特徴の類似点と相違点について述べる。
論文 参考訳(メタデータ) (2025-01-12T07:22:13Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [55.33653554387953]
パターン分析とマシンインテリジェンス(PAMI)は、情報の収集と断片化を目的とした多くの文献レビューにつながっている。
本稿では、PAMI分野におけるこれらの文献レビューの徹底的な分析について述べる。
1)PAMI文献レビューの構造的・統計的特徴は何か,(2)レビューの増大するコーパスを効率的にナビゲートするために研究者が活用できる戦略は何か,(3)AIが作成したレビューの利点と限界は人間によるレビューと比較するとどのようなものか,という3つの主要な研究課題に対処しようとする。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - PROXYQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models [72.57329554067195]
ProxyQAは、長文生成を評価するための革新的なフレームワークである。
さまざまなドメインにまたがる詳細なヒューマンキュレートされたメタクエストで構成されており、それぞれに事前にアノテートされた回答を持つ特定のプロキシクエストが伴っている。
プロキシクエリに対処する際の評価器の精度を通じて、生成されたコンテンツの品質を評価する。
論文 参考訳(メタデータ) (2024-01-26T18:12:25Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instructは、疑似参照でポイントワイズした批評を取得し、マルチパスプロンプトを通じてこれらの批評を修正できる。
CritiqueLLMは、ChatGPTとすべてのオープンソースベースラインを上回るように実証的に示されています。
論文 参考訳(メタデータ) (2023-11-30T16:52:42Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z) - Evaluating the Effectiveness of Pre-trained Language Models in
Predicting the Helpfulness of Online Product Reviews [0.21485350418225244]
オンライン製品レビューの有用性を予測するため,RoBERTaとXLM-R言語モデルの比較を行った。
実験にはAmazonレビューデータセットを使用します。
論文 参考訳(メタデータ) (2023-02-19T18:22:59Z) - Comparing Methods for Extractive Summarization of Call Centre Dialogue [77.34726150561087]
そこで本稿では,これらの手法を用いて呼の要約を生成し,客観的に評価することにより,実験的な比較を行った。
TopicSum と Lead-N は他の要約法よりも優れており,BERTSum は主観的評価と客観的評価の両方で比較的低いスコアを得た。
論文 参考訳(メタデータ) (2022-09-06T13:16:02Z) - Latent Aspect Detection from Online Unsolicited Customer Reviews [3.622430080512776]
アスペクト検出は、プロダクトオーナとサービスプロバイダが欠点を特定し、顧客のニーズを優先順位付けするのに役立つ。
既存の手法は、アスペクトがレビューに潜んでいるときに不足する教師あり学習法を訓練することで、アスペクトの表面形態を検出することに重点を置いている。
側面の潜在事象を抽出する教師なし手法を提案する。
論文 参考訳(メタデータ) (2022-04-14T13:46:25Z) - E-commerce Query-based Generation based on User Review [1.484852576248587]
本稿では,従来のユーザによるレビューに基づいて,ユーザの質問に対する回答を生成するための新しいセク2seqベースのテキスト生成モデルを提案する。
ユーザの質問や感情の極性が与えられた場合,関心事の側面を抽出し,過去のユーザレビューを要約した回答を生成する。
論文 参考訳(メタデータ) (2020-11-11T04:58:31Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - Mining customer product reviews for product development: A summarization
process [0.7742297876120561]
本研究は、顧客の好みや嫌いに関連する言葉や表現をオンラインレビューから識別し、構造化し、製品開発を指導することを目的としている。
著者らは,製品価格,感情,使用状況など,ユーザの嗜好の多面性を含む要約モデルを提案する。
ケーススタディでは、提案したモデルとアノテーションガイドラインにより、人間のアノテーションは、高信頼度でオンラインレビューを構造化できることを示した。
論文 参考訳(メタデータ) (2020-01-13T13:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。