Conformal Prediction with Large Language Models for Multi-Choice
Question Answering
- URL: http://arxiv.org/abs/2305.18404v3
- Date: Sat, 8 Jul 2023 02:20:29 GMT
- Title: Conformal Prediction with Large Language Models for Multi-Choice
Question Answering
- Authors: Bhawesh Kumar, Charlie Lu, Gauri Gupta, Anil Palepu, David Bellamy,
Ramesh Raskar, Andrew Beam
- Abstract summary: We find that the uncertainty estimates from conformal prediction are tightly correlated with prediction accuracy.
This work contributes towards more trustworthy and reliable usage of large language models in safety-critical situations.
- Score: 7.049780432343948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models continue to be widely developed, robust uncertainty
quantification techniques will become crucial for their safe deployment in
high-stakes scenarios. In this work, we explore how conformal prediction can be
used to provide uncertainty quantification in language models for the specific
task of multiple-choice question-answering. We find that the uncertainty
estimates from conformal prediction are tightly correlated with prediction
accuracy. This observation can be useful for downstream applications such as
selective classification and filtering out low-quality predictions. We also
investigate the exchangeability assumption required by conformal prediction to
out-of-subject questions, which may be a more realistic scenario for many
practical applications. Our work contributes towards more trustworthy and
reliable usage of large language models in safety-critical situations, where
robust guarantees of error rate are required.
Related papers
- On Uncertainty In Natural Language Processing [2.5076643086429993]
This thesis studies how uncertainty in natural language processing can be characterized from a linguistic, statistical and neural perspective.
We propose a method for calibrated sampling in natural language generation based on non-exchangeable conformal prediction.
Lastly, we develop an approach to quantify confidence in large black-box language models using auxiliary predictors.
arXiv Detail & Related papers (2024-10-04T14:08:02Z) - Just rephrase it! Uncertainty estimation in closed-source language models via multiple rephrased queries [6.249216559519607]
We estimate the uncertainty of closed-source large language models via multiple rephrasings of an original base query.
Our method demonstrates significant improvements in the calibration of uncertainty estimates compared to the baseline.
arXiv Detail & Related papers (2024-05-22T18:28:26Z) - Conformal Prediction for Natural Language Processing: A Survey [23.638214012459425]
Conformal prediction is emerging as a theoretically sound and practically useful framework.
Its model-agnostic and distribution-free nature makes it particularly promising to address the current shortcomings of NLP systems.
This paper provides a comprehensive survey of conformal prediction techniques, their guarantees, and existing applications in NLP.
arXiv Detail & Related papers (2024-05-03T10:00:45Z) - Uncertainty-aware Language Modeling for Selective Question Answering [107.47864420630923]
We present an automatic large language model (LLM) conversion approach that produces uncertainty-aware LLMs.
Our approach is model- and data-agnostic, is computationally-efficient, and does not rely on external models or systems.
arXiv Detail & Related papers (2023-11-26T22:47:54Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Calibrated Selective Classification [34.08454890436067]
We develop a new approach to selective classification in which we propose a method for rejecting examples with "uncertain" uncertainties.
We present a framework for learning selectively calibrated models, where a separate selector network is trained to improve the selective calibration error of a given base model.
We demonstrate the empirical effectiveness of our approach on multiple image classification and lung cancer risk assessment tasks.
arXiv Detail & Related papers (2022-08-25T13:31:09Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Estimation with Uncertainty via Conditional Generative Adversarial
Networks [3.829070379776576]
We propose a predictive probabilistic neural network model, which corresponds to a different manner of using the generator in conditional Generative Adversarial Network (cGAN)
By reversing the input and output of ordinary cGAN, the model can be successfully used as a predictive model.
In addition, to measure the uncertainty of predictions, we introduce the entropy and relative entropy for regression problems and classification problems.
arXiv Detail & Related papers (2020-07-01T08:54:17Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.