論文の概要: Self-Correction Makes LLMs Better Parsers
- arxiv url: http://arxiv.org/abs/2504.14165v1
- Date: Sat, 19 Apr 2025 03:50:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 04:33:28.485711
- Title: Self-Correction Makes LLMs Better Parsers
- Title(参考訳): 自己補正でLLMがパーサーを良くする
- Authors: Ziyan Zhang, Yang Hou, Chen Gong, Zhenghua Li,
- Abstract要約: 大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクで顕著な成功を収めている。
近年の研究では、深い言語理解に不可欠な基本的なNLPタスクを実行する上で、依然として課題に直面していることが示唆されている。
本稿では,既存の木バンクからの文法規則を活かした自己補正手法を提案する。
- 参考スコア(独自算出の注目度): 19.20952673157709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have achieved remarkable success across various natural language processing (NLP) tasks. However, recent studies suggest that they still face challenges in performing fundamental NLP tasks essential for deep language understanding, particularly syntactic parsing. In this paper, we conduct an in-depth analysis of LLM parsing capabilities, delving into the specific shortcomings of their parsing results. We find that LLMs may stem from limitations to fully leverage grammar rules in existing treebanks, which restricts their capability to generate valid syntactic structures. To help LLMs acquire knowledge without additional training, we propose a self-correction method that leverages grammar rules from existing treebanks to guide LLMs in correcting previous errors. Specifically, we automatically detect potential errors and dynamically search for relevant rules, offering hints and examples to guide LLMs in making corrections themselves. Experimental results on three datasets with various LLMs, demonstrate that our method significantly improves performance in both in-domain and cross-domain settings on the English and Chinese datasets.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクで顕著な成功を収めた。
しかし、近年の研究は、深い言語理解、特に構文解析に不可欠な基本的なNLPタスクを実行する上で、依然として課題に直面していることを示唆している。
本稿では,LLM解析能力の詳細な解析を行い,解析結果の特定の欠点を考察する。
LLMは、既存のツリーバンクの文法規則を完全に活用する制限に起因し、有効な構文構造を生成する能力を制限する可能性がある。
本研究では,LLMの知識獲得を支援するために,既存の木バンクからの文法ルールを活用する自己補正手法を提案する。
具体的には、潜在的なエラーを自動的に検出し、関連するルールを動的に検索し、LLMを自ら修正する際のヒントと例を提供する。
各種LLMを用いた3つのデータセットに対する実験結果から,本手法は英語と中国語のデータセット上でのドメイン内およびドメイン間の両方のパフォーマンスを著しく向上させることが示された。
関連論文リスト
- Prompt and circumstance: A word-by-word LLM prompting approach to interlinear glossing for low-resource languages [6.4977738682502295]
SIGMORPHON 2023共有タスクから7つの言語に適用した,検索に基づくLLM探索手法の有効性について検討した。
我々のシステムは、形態素レベルスコアカテゴリーの全ての言語に対するBERTベースの共有タスクベースラインを破る。
Tsez のケーススタディでは,LLM に言語命令の自動生成と追従を依頼し,難解な文法的特徴の誤りを低減させる。
論文 参考訳(メタデータ) (2025-02-13T21:23:16Z) - Can LLMs Help Create Grammar?: Automating Grammar Creation for Endangered Languages with In-Context Learning [0.0]
本稿では,Large Language Models (LLMs) が低リソース言語に対して限られたデータ量で文法情報を生成するのにどのように役立つかを検討する。
提案手法では,既存の言語データを整理し,形式的XLE文法を効率的に生成できるようにする。
本研究は,LLMが言語文書作成の取り組みを強化し,言語データの生成に費用対効果のあるソリューションを提供し,絶滅危惧言語の保存に寄与する可能性を明らかにする。
論文 参考訳(メタデータ) (2024-12-14T20:43:12Z) - Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization [12.885866125783618]
大規模言語モデル(LLM)は、特定のクエリに対する不正確な応答を生成する傾向がある。
我々は, LLMのトークン化に挑戦するために, $textbfADT (TokenizerのAdrial dataset)$という逆データセットを構築した。
GPT-4o, Llama-3, Qwen2.5-maxなど, 先進LLMのトークン化に挑戦する上で, 当社のADTは極めて有効であることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-27T11:39:59Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
大きな言語モデル(LLM)は、言語理解を高め、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
セマンティック・ロール・ラベルリング(SRL)を,構造化意味論を抽出するLLMの能力を探るための基本課題として用いることを提案する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに私たちは驚いています。
論文 参考訳(メタデータ) (2024-05-10T11:44:05Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Rethinking the Roles of Large Language Models in Chinese Grammatical
Error Correction [62.409807640887834]
中国語の文法的誤り訂正(CGEC)は、入力文中のすべての文法的誤りを修正することを目的としている。
CGECの修正器としてのLLMの性能は、課題の焦点が難しいため不満足なままである。
CGECタスクにおけるLCMの役割を再考し、CGECでよりよく活用し、探索できるようにした。
論文 参考訳(メタデータ) (2024-02-18T01:40:34Z) - Self-Augmented In-Context Learning for Unsupervised Word Translation [23.495503962839337]
大規模言語モデル (LLMs) は、強力な単語翻訳やバイリンガル語彙誘導(BLI)機能を示す。
教師なしBLIのための自己拡張型インコンテキスト学習(SAIL)を提案する。
提案手法は,2つの確立したBLIベンチマーク上でのLDMのゼロショットプロンプトよりも大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-02-15T15:43:05Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。