論文の概要: A Knowledge-Informed Deep Learning Paradigm for Generalizable and Stability-Optimized Car-Following Models
- arxiv url: http://arxiv.org/abs/2504.14241v1
- Date: Sat, 19 Apr 2025 09:33:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 03:53:34.701812
- Title: A Knowledge-Informed Deep Learning Paradigm for Generalizable and Stability-Optimized Car-Following Models
- Title(参考訳): 一般化および安定性最適化自動車追従モデルのための知識インフォームド深層学習パラダイム
- Authors: Chengming Wang, Dongyao Jia, Wei Wang, Dong Ngoduy, Bei Peng, Jianping Wang,
- Abstract要約: 自動車追従モデル (CFMs) は交通流解析と自律運転の基礎である。
本稿では,事前学習型大規模言語モデル(LLM)の一般化能力を軽量かつ安定性に配慮したニューラルアーキテクチャに蒸留する知識情報深層学習(KIDL)パラダイムを提案する。
KIDLを実世界のNGSIMおよびHighDデータセット上で評価し、その性能を代表的物理ベース、データ駆動、ハイブリッドCFMと比較した。
- 参考スコア(独自算出の注目度): 15.34704164931383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Car-following models (CFMs) are fundamental to traffic flow analysis and autonomous driving. Although calibrated physics-based and trained data-driven CFMs can replicate human driving behavior, their reliance on specific datasets limits generalization across diverse scenarios and reduces reliability in real-world deployment. Moreover, these models typically focus on behavioral fidelity and do not support the explicit optimization of local and string stability, which are increasingly important for the safe and efficient operation of autonomous vehicles (AVs). To address these limitations, we propose a Knowledge-Informed Deep Learning (KIDL) paradigm that distills the generalization capabilities of pre-trained Large Language Models (LLMs) into a lightweight and stability-aware neural architecture. LLMs are used to extract fundamental car-following knowledge beyond dataset-specific patterns, and this knowledge is transferred to a reliable, tractable, and computationally efficient model through knowledge distillation. KIDL also incorporates stability constraints directly into its training objective, ensuring that the resulting model not only emulates human-like behavior but also satisfies the local and string stability requirements essential for real-world AV deployment. We evaluate KIDL on the real-world NGSIM and HighD datasets, comparing its performance with representative physics-based, data-driven, and hybrid CFMs. Both empirical and theoretical results consistently demonstrate KIDL's superior behavioral generalization and traffic flow stability, offering a robust and scalable solution for next-generation traffic systems.
- Abstract(参考訳): 自動車追従モデル (CFMs) は交通流解析と自律運転の基礎である。
校正された物理ベースのデータ駆動型CFMは人間の運転行動を再現できるが、特定のデータセットに依存しているため、さまざまなシナリオにわたる一般化が制限され、現実のデプロイメントにおける信頼性が低下する。
さらに、これらのモデルは行動の忠実さに重点を置いており、自律走行車(AV)の安全かつ効率的な運転においてますます重要となる局所的および弦安定性の明示的な最適化をサポートしない。
これらの制約に対処するため、我々は、事前学習された大規模言語モデル(LLM)の一般化能力を軽量で安定性に配慮したニューラルネットワークアーキテクチャに蒸留する知識情報深層学習(KIDL)パラダイムを提案する。
LLMは、データセット固有のパターンを超えて、基本的な自動車追従知識を抽出するために使用され、この知識は、知識蒸留を通じて信頼性があり、抽出可能で、計算的に効率的なモデルに変換される。
KIDLはまた、そのトレーニング目標に直接安定性の制約を組み込むことで、結果のモデルが人間のような振る舞いをエミュレートするだけでなく、実世界のAV展開に必要な局所的および弦的安定性要件を満たすことを保証する。
KIDLを実世界のNGSIMおよびHighDデータセット上で評価し、その性能を代表的物理ベース、データ駆動、ハイブリッドCFMと比較した。
実験的および理論的結果は、KIDLの優れた挙動一般化とトラフィックフロー安定性を一貫して証明し、次世代の交通システムに対して堅牢でスケーラブルなソリューションを提供する。
関連論文リスト
- Offline Robotic World Model: Learning Robotic Policies without a Physics Simulator [50.191655141020505]
強化学習(Reinforcement Learning, RL)は、ロボット制御において目覚ましい能力を示してきたが、高いサンプルの複雑さ、安全性の懸念、そしてシム・トゥ・リアルのギャップのため、依然として困難である。
物理シミュレータに頼らずに政策学習を改善するために不確実性を明示的に推定するモデルベースアプローチであるオフラインロボット世界モデル(RWM-O)を導入する。
論文 参考訳(メタデータ) (2025-04-23T12:58:15Z) - Physics Enhanced Residual Policy Learning (PERPL) for safety cruising in mixed traffic platooning under actuator and communication delay [8.172286651098027]
線形制御モデルは、その単純さ、使いやすさ、安定性解析のサポートにより、車両制御に広範囲に応用されている。
一方、強化学習(RL)モデルは適応性を提供するが、解釈可能性や一般化能力の欠如に悩まされる。
本稿では,物理インフォームドポリシによって強化されたRL制御系の開発を目標とする。
論文 参考訳(メタデータ) (2024-09-23T23:02:34Z) - Knowledge-data fusion oriented traffic state estimation: A stochastic physics-informed deep learning approach [12.08072226345806]
本研究では,交通状態推定のための物理インフォームドディープラーニング(SPIDL)を提案する。
SPIDLの主な貢献は、ニューラルネットワークトレーニング中の決定論的モデルにおける1対1の速度密度関係に起因する"過度に集中的なガイダンス"に対処することにある。
実世界のデータセットにおける実験から,提案したSPIDLモデルがスパースデータシナリオにおける正確なトラフィック状態推定を実現することが示唆された。
論文 参考訳(メタデータ) (2024-09-01T07:34:40Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
本稿では,知識インフォームドモデルに基づく残留強化学習フレームワークを提案する。
交通専門家の知識を仮想環境モデルに統合し、基本力学にIntelligent Driver Model(IDM)、残留力学にニューラルネットワークを使用する。
本稿では,従来の制御手法を残差RLと組み合わせて,スクラッチから学習することなく,効率的な学習と政策最適化を容易にする新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-08-30T16:16:57Z) - Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
本報告では, モデルロバスト性, 性能を向上させるため, 強化したトレーニング手法を提案する。
機械学習モデルの弱点を特定し、適切な拡張を選択し、効果的なトレーニング戦略を考案する包括的フレームワークを提案する。
実験結果は,オープンソースオブジェクトの検出とセマンティックセグメンテーションモデルとデータセットに対する平均平均精度(mAP)や平均距離(mIoU)といった一般的な測定値によって測定されるモデル性能の改善を示す。
論文 参考訳(メタデータ) (2024-08-30T14:15:48Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
本稿では,非線形ロボットシステムの力学を積極的にモデル化する自己教師型学習手法を提案する。
我々のアプローチは、目に見えない飛行条件に一貫して適応することで、高いレジリエンスと一般化能力を示す。
論文 参考訳(メタデータ) (2022-10-23T00:45:05Z) - UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning
Leveraging Planning [1.1339580074756188]
オフライン強化学習(RL)は、オフラインデータから意思決定を学ぶためのフレームワークを提供する。
自動運転車(SDV)は、おそらく準最適データセットの振る舞いよりも優れるポリシーを学ぶ。
これはモデルベースのオフラインRLアプローチの使用を動機付け、プランニングを活用する。
論文 参考訳(メタデータ) (2021-11-22T10:37:52Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。