Machine learning enhanced atom probe tomography analysis: a snapshot review
- URL: http://arxiv.org/abs/2504.14378v1
- Date: Sat, 19 Apr 2025 18:37:26 GMT
- Title: Machine learning enhanced atom probe tomography analysis: a snapshot review
- Authors: Yue Li, Ye Wei, Alaukik Saxena, Markus Kühbach, Christoph Freysoldt, Baptiste Gault,
- Abstract summary: We estimate that one million APT datasets have been collected, each containing millions to billions of individual ions.<n>Current practices hinder efficient data processing, and make challenging standardization and the deployment of data analysis that would be compliant with FAIR data principles.<n>There has been a surge of novel machine learning (ML) approaches aiming for user-independence, and that are efficient, reproducible, and robust from a statistics perspective.
- Score: 2.7396355250860034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Atom probe tomography (APT) is a burgeoning characterization technique that provides compositional mapping of materials in three-dimensions at near-atomic scale. Since its significant expansion in the past 30 years, we estimate that one million APT datasets have been collected, each containing millions to billions of individual ions. Their analysis and the extraction of microstructural information has largely relied upon individual users whose varied level of expertise causes clear and documented bias. Current practices hinder efficient data processing, and make challenging standardization and the deployment of data analysis workflows that would be compliant with FAIR data principles. Over the past decade, building upon the long-standing expertise of the APT community in the development of advanced data processing or data mining techniques, there has been a surge of novel machine learning (ML) approaches aiming for user-independence, and that are efficient, reproducible, and robust from a statistics perspective. Here, we provide a snapshot review of this rapidly evolving field. We begin with a brief introduction to APT and the nature of the APT data. This is followed by an overview of relevant ML algorithms and a comprehensive review of their applications to APT. We also discuss how ML can enable discoveries beyond human capability, offering new insights into the mechanisms within materials. Finally, we provide guidance for future directions in this domain.
Related papers
- Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond [38.32974480709081]
The rapid advent of machine learning (ML) and artificial intelligence (AI) has catalyzed major transformations in chemistry.<n>The application of these methods to spectroscopic and spectrometric data, referred to as Spectroscopy Machine Learning (SpectraML), remains relatively underexplored.<n>We provide a unified review of SpectraML, systematically examining state-of-the-art approaches for both forward tasks and inverse tasks.
arXiv Detail & Related papers (2025-02-14T04:07:25Z) - Machine Learning for Missing Value Imputation [0.0]
The main objective of this article is to conduct a comprehensive and rigorous review, as well as analysis, of the state-of-the-art machine learning applications in Missing Value Imputation.
More than 100 articles published between 2014 and 2023 are critically reviewed, considering the methods and findings.
The latest literature is examined to scrutinize the trends in MVI methods and their evaluation.
arXiv Detail & Related papers (2024-10-10T18:56:49Z) - Benchmarking Data Science Agents [11.582116078653968]
Large Language Models (LLMs) have emerged as promising aids as data science agents, assisting humans in data analysis and processing.
Yet their practical efficacy remains constrained by the varied demands of real-world applications and complicated analytical process.
We introduce DSEval -- a novel evaluation paradigm, as well as a series of innovative benchmarks tailored for assessing the performance of these agents.
arXiv Detail & Related papers (2024-02-27T03:03:06Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - Accelerated materials language processing enabled by GPT [5.518792725397679]
We develop generative transformer (GPT)-enabled pipelines for materials language processing.
First, we develop a GPT-enabled document classification method for screening relevant documents.
Secondly, for NER task, we design an entity-centric prompts, and learning few-shot of them improved the performance.
Finally, we develop an GPT-enabled extractive QA model, which provides improved performance and shows the possibility of automatically correcting annotations.
arXiv Detail & Related papers (2023-08-18T07:31:13Z) - Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary
Data [100.33096338195723]
We focus on Few-shot Learning with Auxiliary Data (FLAD)
FLAD assumes access to auxiliary data during few-shot learning in hopes of improving generalization.
We propose two algorithms -- EXP3-FLAD and UCB1-FLAD -- and compare them with prior FLAD methods that either explore or exploit.
arXiv Detail & Related papers (2023-02-01T18:59:36Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
Learning on small data that approximates the generalization ability of big data is one of the ultimate purposes of AI.
This survey follows the active sampling theory under a PAC framework to analyze the generalization error and label complexity of learning on small data.
Multiple data applications that may benefit from efficient small data representation are surveyed.
arXiv Detail & Related papers (2022-07-29T02:34:19Z) - Explainable Predictive Modeling for Limited Spectral Data [0.0]
We introduce applying recent explainable AI techniques to interpret the prediction outcomes of high-dimensional and limited spectral data.
Due to instrument resolution limitations, pinpointing important regions of the spectroscopy data creates a pathway to optimize the data collection process.
We specifically design three different scenarios to ensure that the evaluation of ML models is robust for the real-time practice.
arXiv Detail & Related papers (2022-02-09T15:46:17Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
Large-scale pre-trained models (PTMs) have recently achieved great success and become a milestone in the field of artificial intelligence (AI)
By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks.
It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch.
arXiv Detail & Related papers (2021-06-14T02:40:32Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.