論文の概要: Efficient Implicit Neural Compression of Point Clouds via Learnable Activation in Latent Space
- arxiv url: http://arxiv.org/abs/2504.14471v1
- Date: Sun, 20 Apr 2025 03:37:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 00:18:59.380162
- Title: Efficient Implicit Neural Compression of Point Clouds via Learnable Activation in Latent Space
- Title(参考訳): 潜時空間における学習可能な活性化による点雲の効率よいインシシトニューラル圧縮
- Authors: Yichi Zhang, Qianqian Yang,
- Abstract要約: Inlicit Neural Representations (INR) はディープラーニングの強力なパラダイムとして登場した。
静的クラウド圧縮のためのINRベースのフレームワークである textbfPICO を提案する。
当社のアプローチは競争力が高く、PCQMの平均利得は2.7倍10-3$である。
- 参考スコア(独自算出の注目度): 10.056460330355193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit Neural Representations (INRs), also known as neural fields, have emerged as a powerful paradigm in deep learning, parameterizing continuous spatial fields using coordinate-based neural networks. In this paper, we propose \textbf{PICO}, an INR-based framework for static point cloud compression. Unlike prevailing encoder-decoder paradigms, we decompose the point cloud compression task into two separate stages: geometry compression and attribute compression, each with distinct INR optimization objectives. Inspired by Kolmogorov-Arnold Networks (KANs), we introduce a novel network architecture, \textbf{LeAFNet}, which leverages learnable activation functions in the latent space to better approximate the target signal's implicit function. By reformulating point cloud compression as neural parameter compression, we further improve compression efficiency through quantization and entropy coding. Experimental results demonstrate that \textbf{LeAFNet} outperforms conventional MLPs in INR-based point cloud compression. Furthermore, \textbf{PICO} achieves superior geometry compression performance compared to the current MPEG point cloud compression standard, yielding an average improvement of $4.92$ dB in D1 PSNR. In joint geometry and attribute compression, our approach exhibits highly competitive results, with an average PCQM gain of $2.7 \times 10^{-3}$.
- Abstract(参考訳): Inlicit Neural Representation (INRs) は、ディープラーニングにおいて、座標ベースニューラルネットワークを用いて連続空間場をパラメータ化する強力なパラダイムとして登場した。
本稿では,静的ポイントクラウド圧縮のための INR ベースのフレームワークである \textbf{PICO} を提案する。
一般的なエンコーダ・デコーダのパラダイムとは異なり、ポイントクラウド圧縮タスクは、幾何圧縮と属性圧縮という2つの段階に分けられる。
Kolmogorov-Arnold Networks (KAN) にインスパイアされた新しいネットワークアーキテクチャである \textbf{LeAFNet} を導入する。
点雲圧縮をニューラルパラメータ圧縮として再構成することにより、量子化およびエントロピー符号化による圧縮効率をさらに向上する。
実験により,INRベースの点雲圧縮において,textbf{LeAFNet} は従来の MLP よりも優れていた。
さらに、'textbf{PICO} は、現在のMPEGポイントクラウド圧縮標準よりも優れた幾何圧縮性能を達成し、D1 PSNRにおける平均4.92ドルdBの改善をもたらす。
共同幾何学と属性圧縮では, 平均PCQMゲインは2.7 \times 10^{-3}$である。
関連論文リスト
- Hierarchical Semantic Compression for Consistent Image Semantic Restoration [62.97519327310638]
生成モデルから固有意味空間内で純粋に機能する新しい階層意味圧縮(HSC)フレームワークを提案する。
実験の結果,提案したHSCフレームワークは人間の視力に対する主観的品質と一貫性に関する最先端の性能を実現することが示された。
論文 参考訳(メタデータ) (2025-02-24T03:20:44Z) - Implicit Neural Compression of Point Clouds [58.45774938982386]
NeRC$textbf3$は、暗黙の神経表現を利用して、幾何学と属性の両方を扱う新しいポイントクラウド圧縮フレームワークである。
動的点雲の場合、4D-NeRC$textbf3$は最先端のG-PCCやV-PCC標準よりも優れた幾何圧縮を示す。
論文 参考訳(メタデータ) (2024-12-11T03:22:00Z) - Point Cloud Compression with Bits-back Coding [32.9521748764196]
本稿では,深層学習に基づく確率モデルを用いて,点雲情報のシャノンエントロピーを推定する。
点雲データセットのエントロピーを推定すると、学習されたCVAEモデルを用いて点雲の幾何学的属性を圧縮する。
本手法の新規性は,CVAEの学習潜在変数モデルを用いて点雲データを圧縮することである。
論文 参考訳(メタデータ) (2024-10-09T06:34:48Z) - End-to-end learned Lossy Dynamic Point Cloud Attribute Compression [5.717288278431968]
本研究では、エンドツーエンドの動的損失属性符号化手法を提案する。
我々は、遅延テンソルをビットストリームに符号化する自動回帰コンテキストモデルとともに、従来の潜時空間を利用するコンテキストモデルを用いる。
論文 参考訳(メタデータ) (2024-08-20T09:06:59Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
我々は幾何学と属性の両方を扱える先駆的なクラウド圧縮フレームワークを提案する。
本フレームワークでは,2つの座標ベースニューラルネットワークを用いて,voxelized point cloudを暗黙的に表現する。
本手法は,既存の学習手法と比較して,高い普遍性を示す。
論文 参考訳(メタデータ) (2024-05-19T09:19:40Z) - "Lossless" Compression of Deep Neural Networks: A High-dimensional
Neural Tangent Kernel Approach [49.744093838327615]
広帯域かつ完全接続型エンフディープニューラルネットに対する新しい圧縮手法を提案する。
提案手法の利点を支えるために, 合成データと実世界のデータの両方の実験を行った。
論文 参考訳(メタデータ) (2024-03-01T03:46:28Z) - Towards Hardware-Specific Automatic Compression of Neural Networks [0.0]
プルーニングと量子化が ニューラルネットワークを圧縮する主要なアプローチです
効率的な圧縮ポリシーは、特定のハードウェアアーキテクチャが使用する圧縮方法に与える影響を考慮する。
本稿では,プレニングと量子化を利用した強化学習を用いて,Galenと呼ばれるアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-15T13:34:02Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
本稿では、音源符号化に基づく畳み込みニューラルネットワーク(CNN)の新しいストレージフォーマットを提案し、重み付けと量子化の両方を活用する。
我々は、全接続層で0.6%、ネットワーク全体で5.44%のスペース占有率を削減し、最低でもベースラインと同じくらいの競争力を発揮する。
論文 参考訳(メタデータ) (2021-08-28T20:39:54Z) - DeepCompress: Efficient Point Cloud Geometry Compression [1.808877001896346]
本稿では,ポイントクラウド圧縮のためのより効率的なディープラーニングベースのエンコーダアーキテクチャを提案する。
CENIC(Efficient Neural Image Compression)から学習した活性化関数を組み込むことで,効率と性能が劇的に向上することを示す。
提案手法は,BjontegardデルタレートとPSNR値において,ベースラインアプローチよりも小さなマージンで優れていた。
論文 参考訳(メタデータ) (2021-06-02T23:18:11Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。