論文の概要: End-to-end learned Lossy Dynamic Point Cloud Attribute Compression
- arxiv url: http://arxiv.org/abs/2408.10665v1
- Date: Tue, 20 Aug 2024 09:06:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 14:24:42.807613
- Title: End-to-end learned Lossy Dynamic Point Cloud Attribute Compression
- Title(参考訳): エンド・ツー・エンドで学習したロッシーなダイナミックポイントクラウド属性圧縮
- Authors: Dat Thanh Nguyen, Daniel Zieger, Marc Stamminger, Andre Kaup,
- Abstract要約: 本研究では、エンドツーエンドの動的損失属性符号化手法を提案する。
我々は、遅延テンソルをビットストリームに符号化する自動回帰コンテキストモデルとともに、従来の潜時空間を利用するコンテキストモデルを用いる。
- 参考スコア(独自算出の注目度): 5.717288278431968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in point cloud compression have primarily emphasized geometry compression while comparatively fewer efforts have been dedicated to attribute compression. This study introduces an end-to-end learned dynamic lossy attribute coding approach, utilizing an efficient high-dimensional convolution to capture extensive inter-point dependencies. This enables the efficient projection of attribute features into latent variables. Subsequently, we employ a context model that leverage previous latent space in conjunction with an auto-regressive context model for encoding the latent tensor into a bitstream. Evaluation of our method on widely utilized point cloud datasets from the MPEG and Microsoft demonstrates its superior performance compared to the core attribute compression module Region-Adaptive Hierarchical Transform method from MPEG Geometry Point Cloud Compression with 38.1% Bjontegaard Delta-rate saving in average while ensuring a low-complexity encoding/decoding.
- Abstract(参考訳): ポイントクラウド圧縮の最近の進歩は、主に幾何学的圧縮を強調している一方、属性圧縮に向けられた取り組みは比較的少ない。
本研究では,高速な高次元畳み込みを利用して,広範囲な点間依存関係を抽出し,エンドツーエンドの動的損失属性符号化手法を提案する。
これにより、属性特徴の潜在変数への効率的なプロジェクションが可能になる。
次に,遅延テンソルをビットストリームに符号化する自動回帰コンテキストモデルとともに,従来の潜時空間を利用するコンテキストモデルを用いる。
MPEG と Microsoft から広く活用されている点クラウドデータセットの評価は,MPEG Geometry Point Cloud Compression のコア属性圧縮モジュールである Region-Adaptive Hierarchical Transform よりも優れた性能を示し,Bjontegaard デルタレートを平均38.1%削減し,低複雑さの符号化/復号を実現した。
関連論文リスト
- Large Language Models for Lossless Image Compression: Next-Pixel Prediction in Language Space is All You Need [53.584140947828004]
前例のないインテリジェンスを持つ言語大モデル(LLM)は、様々なデータモダリティのための汎用ロスレス圧縮機である。
P$2$-LLMは,様々な入念な洞察と方法論を統合した次世代の予測型LLMである。
ベンチマークデータセットの実験では、P$2$-LLMがSOTAの古典的および学習的コーデックに勝ることを示した。
論文 参考訳(メタデータ) (2024-11-19T12:15:40Z) - Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D視覚化技術は、私たちがデジタルコンテンツと対話する方法を根本的に変えてきた。
ポイントクラウドの大規模データサイズは、データ圧縮において大きな課題を呈している。
そこで我々はPCACと差別化可能なレンダリングをシームレスに統合するエンドツーエンドのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-12T16:12:51Z) - Att2CPC: Attention-Guided Lossy Attribute Compression of Point Clouds [18.244200436103156]
本稿では, オートエンコーダアーキテクチャを利用して, ポイントクラウド属性を効率よく圧縮する手法を提案する。
実験の結果,YチャネルのBD-PSNRとYUVチャネルの平均改善率は1.15dBと2.13dBであることがわかった。
論文 参考訳(メタデータ) (2024-10-23T12:32:21Z) - Point Cloud Compression with Bits-back Coding [32.9521748764196]
本稿では,深層学習に基づく確率モデルを用いて,点雲情報のシャノンエントロピーを推定する。
点雲データセットのエントロピーを推定すると、学習されたCVAEモデルを用いて点雲の幾何学的属性を圧縮する。
本手法の新規性は,CVAEの学習潜在変数モデルを用いて点雲データを圧縮することである。
論文 参考訳(メタデータ) (2024-10-09T06:34:48Z) - SPAC: Sampling-based Progressive Attribute Compression for Dense Point Clouds [51.313922535437726]
本研究では,高密度点雲のエンドツーエンド圧縮法を提案する。
提案手法は,周波数サンプリングモジュール,適応スケール特徴抽出モジュール,幾何支援モジュール,大域的ハイパープライアエントロピーモデルを組み合わせた。
論文 参考訳(メタデータ) (2024-09-16T13:59:43Z) - Learned Compression of Point Cloud Geometry and Attributes in a Single Model through Multimodal Rate-Control [2.7077560296908416]
我々は単一適応オートエンコーダモデルを用いて幾何学と属性の合同圧縮を学習する。
本評価は, 形状と属性に対する最先端圧縮手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2024-08-01T14:31:06Z) - Geometric Prior Based Deep Human Point Cloud Geometry Compression [67.49785946369055]
我々は、点雲の幾何学的冗長性除去に先立って、人間の幾何学的手法を利用する。
高分解能な人点雲を幾何学的先行と構造的偏差の組み合わせとして考えることができる。
提案フレームワークは,既存の学習ベースポイントクラウド圧縮手法を用いて,プレイ・アンド・プラグ方式で動作可能である。
論文 参考訳(メタデータ) (2023-05-02T10:35:20Z) - Deep probabilistic model for lossless scalable point cloud attribute
compression [2.2559617939136505]
我々は、属性を段階的にマルチスケールの潜在空間に投影するエンドツーエンドのクラウド属性符号化法(MNeT)を構築した。
MVUB と MPEG の点群に対して本手法の有効性を検証し,提案手法が最近提案した手法よりも優れており,最新の G-PCC バージョン 14 と同等であることを示す。
論文 参考訳(メタデータ) (2023-03-11T23:39:30Z) - ECM-OPCC: Efficient Context Model for Octree-based Point Cloud
Compression [6.509720419113212]
我々は,十分に効率的なコンテキストモデルを提案し,ポイントクラウドのための効率的なディープラーニングを設計する。
具体的には、まず、自己回帰的コンテキストを活用するために、ウィンドウ制約付きマルチグループ符号化戦略を提案する。
また、その祖先と兄弟に対する現在のノードの依存性を利用するためのデュアルトランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-20T09:20:32Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
本稿では,ディープニューラルネットワークの表現と学習能力を活用することで,エンドツーエンドの特徴圧縮手法を提案する。
特に、抽出した特徴量を、レート歪みコストを最適化することにより、エンドツーエンドでコンパクトに符号化する。
提案モデルの有効性を顔の特徴で検証し, 圧縮性能を高いレート精度で評価した。
論文 参考訳(メタデータ) (2020-02-10T10:08:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。