Generative Auto-Bidding with Value-Guided Explorations
- URL: http://arxiv.org/abs/2504.14587v2
- Date: Fri, 25 Apr 2025 15:04:43 GMT
- Title: Generative Auto-Bidding with Value-Guided Explorations
- Authors: Jingtong Gao, Yewen Li, Shuai Mao, Peng Jiang, Nan Jiang, Yejing Wang, Qingpeng Cai, Fei Pan, Peng Jiang, Kun Gai, Bo An, Xiangyu Zhao,
- Abstract summary: This paper introduces a novel offline Generative Auto-bidding framework with Value-Guided Explorations (GAVE)<n> Experimental results on two offline datasets and real-world deployments demonstrate that GAVE outperforms state-of-the-art baselines in both offline evaluations and online A/B tests.
- Score: 47.71346722705783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Auto-bidding, with its strong capability to optimize bidding decisions within dynamic and competitive online environments, has become a pivotal strategy for advertising platforms. Existing approaches typically employ rule-based strategies or Reinforcement Learning (RL) techniques. However, rule-based strategies lack the flexibility to adapt to time-varying market conditions, and RL-based methods struggle to capture essential historical dependencies and observations within Markov Decision Process (MDP) frameworks. Furthermore, these approaches often face challenges in ensuring strategy adaptability across diverse advertising objectives. Additionally, as offline training methods are increasingly adopted to facilitate the deployment and maintenance of stable online strategies, the issues of documented behavioral patterns and behavioral collapse resulting from training on fixed offline datasets become increasingly significant. To address these limitations, this paper introduces a novel offline Generative Auto-bidding framework with Value-Guided Explorations (GAVE). GAVE accommodates various advertising objectives through a score-based Return-To-Go (RTG) module. Moreover, GAVE integrates an action exploration mechanism with an RTG-based evaluation method to explore novel actions while ensuring stability-preserving updates. A learnable value function is also designed to guide the direction of action exploration and mitigate Out-of-Distribution (OOD) problems. Experimental results on two offline datasets and real-world deployments demonstrate that GAVE outperforms state-of-the-art baselines in both offline evaluations and online A/B tests. By applying the core methods of this framework, we proudly secured first place in the NeurIPS 2024 competition, 'AIGB Track: Learning Auto-Bidding Agents with Generative Models'.
Related papers
- EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning [69.55982246413046]
We propose explicit policy optimization (EPO) for strategic reasoning.
EPO provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior.
Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment.
arXiv Detail & Related papers (2025-02-18T03:15:55Z) - Trajectory-wise Iterative Reinforcement Learning Framework for Auto-bidding [16.556934508295456]
In online advertising, advertisers participate in ad auctions to acquire ad opportunities, often by utilizing auto-bidding tools provided by demand-side platforms (DSPs)
Due to safety concerns, most RL-based auto-bidding policies are trained in simulation, leading to a performance degradation when deployed in online environments.
We propose Trajectory-wise Exploration and Exploitation (TEE), which introduces a novel data collecting and data utilization method for iterative offline RL.
arXiv Detail & Related papers (2024-02-23T05:20:23Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - A Simple Unified Uncertainty-Guided Framework for Offline-to-Online
Reinforcement Learning [25.123237633748193]
offline-to-online reinforcement learning can be challenging due to constrained exploratory behavior and state-action distribution shift.
We propose a Simple Unified uNcertainty-Guided (SUNG) framework, which unifies the solution to both challenges with the tool of uncertainty.
SUNG achieves state-of-the-art online finetuning performance when combined with different offline RL methods.
arXiv Detail & Related papers (2023-06-13T05:22:26Z) - Making Offline RL Online: Collaborative World Models for Offline Visual Reinforcement Learning [93.99377042564919]
This paper tries to build more flexible constraints for value estimation without impeding the exploration of potential advantages.
The key idea is to leverage off-the-shelf RL simulators, which can be easily interacted with in an online manner, as the "test bed" for offline policies.
We introduce CoWorld, a model-based RL approach that mitigates cross-domain discrepancies in state and reward spaces.
arXiv Detail & Related papers (2023-05-24T15:45:35Z) - Offline Reinforcement Learning with Adaptive Behavior Regularization [1.491109220586182]
offline reinforcement learning (RL) defines a sample-efficient learning paradigm, where a policy is learned from static and previously collected datasets.
We propose a novel approach, which we refer to as adaptive behavior regularization (ABR)
ABR enables the policy to adaptively adjust its optimization objective between cloning and improving over the policy used to generate the dataset.
arXiv Detail & Related papers (2022-11-15T15:59:11Z) - Towards Online Domain Adaptive Object Detection [79.89082006155135]
Existing object detection models assume both the training and test data are sampled from the same source domain.
We propose a novel unified adaptation framework that adapts and improves generalization on the target domain in online settings.
arXiv Detail & Related papers (2022-04-11T17:47:22Z) - Model-Based Offline Meta-Reinforcement Learning with Regularization [63.35040401948943]
offline Meta-RL is emerging as a promising approach to address these challenges.
MerPO learns a meta-model for efficient task structure inference and an informative meta-policy.
We show that MerPO offers guaranteed improvement over both the behavior policy and the meta-policy.
arXiv Detail & Related papers (2022-02-07T04:15:20Z) - UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning
Leveraging Planning [1.1339580074756188]
Offline reinforcement learning (RL) provides a framework for learning decision-making from offline data.
Self-driving vehicles (SDV) learn a policy, which potentially even outperforms the behavior in the sub-optimal data set.
This motivates the use of model-based offline RL approaches, which leverage planning.
arXiv Detail & Related papers (2021-11-22T10:37:52Z) - Offline Meta-Reinforcement Learning with Online Self-Supervision [66.42016534065276]
We propose a hybrid offline meta-RL algorithm, which uses offline data with rewards to meta-train an adaptive policy.
Our method uses the offline data to learn the distribution of reward functions, which is then sampled to self-supervise reward labels for the additional online data.
We find that using additional data and self-generated rewards significantly improves an agent's ability to generalize.
arXiv Detail & Related papers (2021-07-08T17:01:32Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.