Novel Concept-Oriented Synthetic Data approach for Training Generative AI-Driven Crystal Grain Analysis Using Diffusion Model
- URL: http://arxiv.org/abs/2504.14782v1
- Date: Mon, 21 Apr 2025 00:46:28 GMT
- Title: Novel Concept-Oriented Synthetic Data approach for Training Generative AI-Driven Crystal Grain Analysis Using Diffusion Model
- Authors: Ahmed Sobhi Saleh, Kristof Croes, Hajdin Ceric, Ingrid De Wolf, Houman Zahedmanesh,
- Abstract summary: This study integrates edge detection with generative diffusion models to identify grains, eliminate noise, and connect broken segments in alignment with predicted grain boundaries.<n>The presented model was applied to various metals with average grain sizes down to the nanoscale, producing grain morphologies from low-resolution TEM images with an average accuracy of 97.23%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The traditional techniques for extracting polycrystalline grain structures from microscopy images, such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM), are labour-intensive, subjective, and time-consuming, limiting their scalability for high-throughput analysis. In this study, we present an automated methodology integrating edge detection with generative diffusion models to effectively identify grains, eliminate noise, and connect broken segments in alignment with predicted grain boundaries. Due to the limited availability of adequate images preventing the training of deep machine learning models, a new seven-stage methodology is employed to generate synthetic TEM images for training. This concept-oriented synthetic data approach can be extended to any field of interest where the scarcity of data is a challenge. The presented model was applied to various metals with average grain sizes down to the nanoscale, producing grain morphologies from low-resolution TEM images that are comparable to those obtained from advanced and demanding experimental techniques with an average accuracy of 97.23%.
Related papers
- Zero-shot Shape Classification of Nanoparticles in SEM Images using Vision Foundation Models [0.9466841964978984]
Conventional deep learning methods for shape classification require extensive labeled datasets and computationally demanding training.<n>In this study, we introduce a zero-shot classification pipeline that leverages two vision foundation models.<n>We achieve high-precision shape classification across three morphologically diverse nanoparticle datasets.
arXiv Detail & Related papers (2025-08-05T09:03:56Z) - Direct Dual-Energy CT Material Decomposition using Model-based Denoising Diffusion Model [105.95160543743984]
We propose a deep learning procedure called Dual-Energy Decomposition Model-based Diffusion (DEcomp-MoD) for quantitative material decomposition.<n>We show that DEcomp-MoD outperform state-of-the-art unsupervised score-based model and supervised deep learning networks.
arXiv Detail & Related papers (2025-07-24T01:00:06Z) - DiffRenderGAN: Addressing Training Data Scarcity in Deep Segmentation Networks for Quantitative Nanomaterial Analysis through Differentiable Rendering and Generative Modelling [0.1135917885955104]
Deep learning segmentation networks enable automated insights and replace subjective methods with precise quantitative analysis.<n>We introduce DiffRenderGAN, a novel generative model designed to produce annotated synthetic data.<n>This approach reduces the need for manual intervention and enhances segmentation performance compared to existing synthetic data methods.
arXiv Detail & Related papers (2025-02-13T16:41:44Z) - MaskTerial: A Foundation Model for Automated 2D Material Flake Detection [48.73213960205105]
We present a deep learning model, called MaskTerial, that uses an instance segmentation network to reliably identify 2D material flakes.<n>The model is extensively pre-trained using a synthetic data generator, that generates realistic microscopy images from unlabeled data.<n>We demonstrate significant improvements over existing techniques in the detection of low-contrast materials such as hexagonal boron nitride.
arXiv Detail & Related papers (2024-12-12T15:01:39Z) - Rapid hyperspectral photothermal mid-infrared spectroscopic imaging from
sparse data for gynecologic cancer tissue subtyping [3.550171634694342]
Mid-infrared (MIR) hyperspectral photothermal imaging is a label-free, biochemically quantitative technology.
This work presents a novel approach to MIR photothermal imaging that enhances its speed by an order of magnitude.
arXiv Detail & Related papers (2024-02-28T00:57:35Z) - Retinal OCT Synthesis with Denoising Diffusion Probabilistic Models for
Layer Segmentation [2.4113205575263708]
We propose an image synthesis method that utilizes denoising diffusion probabilistic models (DDPMs) to automatically generate retinal optical coherence tomography ( OCT) images.
We observe a consistent improvement in layer segmentation accuracy, which is validated using various neural networks.
These findings demonstrate the promising potential of DDPMs in reducing the need for manual annotations of retinal OCT images.
arXiv Detail & Related papers (2023-11-09T16:09:24Z) - Determination of droplet size from wide-angle light scattering image
data using convolutional neural networks [0.0]
We introduce a fully automatic machine learning-based approach that employs convolutional neural networks (CNNs) in order to streamline the droplet sizing process.
We consider WALS data from an ethanol spray flame process at various heights above the burner surface (HABs)
The models are trained and cross-validated on a large dataset comprising nearly 35000 WALS images.
arXiv Detail & Related papers (2023-11-03T18:05:47Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
We use a neural network based on the Recurrent Inference Machine to reconstruct an undistorted image of the background source and the lens mass density distribution as pixelated maps.
When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions.
arXiv Detail & Related papers (2023-01-10T19:00:12Z) - Deep learning at the edge enables real-time streaming ptychographic
imaging [7.4083593332068975]
Coherent microscopy techniques like ptychography are poised to revolutionize nanoscale materials characterization.
Traditional approaches no longer suffice for recovering sample images in real-time from high-speed coherent imaging experiments.
Here, we demonstrate a workflow that leverages artificial intelligence at the edge and high-performance computing to enable real-time inversion on X-ray ptychography data streamed directly from a detector at up to 2 kHz.
arXiv Detail & Related papers (2022-09-20T02:02:37Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
We propose an automated pipeline for the analysis of X-ray diffraction images based on the Faster R-CNN deep learning architecture.
We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications.
arXiv Detail & Related papers (2022-02-22T15:39:00Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators.
Experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
arXiv Detail & Related papers (2020-06-26T02:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.