Advancing quantum process tomography through universal compilation
- URL: http://arxiv.org/abs/2504.14958v1
- Date: Mon, 21 Apr 2025 08:34:33 GMT
- Title: Advancing quantum process tomography through universal compilation
- Authors: Huynh Le Dan Linh, Vu Tuan Hai, Le Bin Ho,
- Abstract summary: Quantum process tomography (QPT) is crucial for characterizing operations in quantum gates and circuits.<n>Here, we propose a QPT approach based on universal compilation, which systematically decomposes quantum processes into optimized Kraus operators and Choi matrices.<n>We benchmark our approach through numerical simulations of random unitary gates, demonstrating highly accurate quantum process characterization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum process tomography (QPT) is crucial for characterizing operations in quantum gates and circuits, however, existing methods face scalability and noise sensitivity challenges. Here, we propose a QPT approach based on universal compilation, which systematically decomposes quantum processes into optimized Kraus operators and Choi matrices. This method utilizes efficient algorithms to improve accuracy while reducing resource requirements. We benchmark our approach through numerical simulations of random unitary gates, demonstrating highly accurate quantum process characterization. Additionally, we apply it to dephasing processes with time-homogeneous and time-inhomogeneous noise, achieving improved fidelity and robustness. Our work further enables broader applications in quantum error correction and device validation.
Related papers
- Classical post-processing approach for quantum amplitude estimation [0.0]
We propose an approach for quantum amplitude estimation (QAE) designed to enhance computational efficiency while minimizing the reliance on quantum resources.<n>Our method leverages quantum computers to generate a sequence of signals, from which the quantum amplitude is inferred through classical post-processing techniques.
arXiv Detail & Related papers (2025-02-08T15:51:31Z) - Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
We introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework.
We illustrate the framework by optimizing external superconducting on quantum interference devices.
The synergy between PBVQO and meta-learning provides an advantage over conventional gate-based variational algorithms.
arXiv Detail & Related papers (2024-07-17T15:05:36Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
We present a new method for small-to-intermediate scale variational algorithms on noisy quantum processors.
Our scheme shifts the computational burden onto the classical component of these hybrid algorithms, greatly reducing the number of queries to the quantum processor.
arXiv Detail & Related papers (2022-11-02T14:11:25Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Estimating gate-set properties from random sequences [0.0]
Current quantum devices are only capable of short unstructured gate sequences followed by native measurements.
A single experiment - random sequence estimation - solves a wealth of estimation problems.
We derive robust channel variants of shadow estimation with close-to-optimal performance guarantees.
arXiv Detail & Related papers (2021-10-25T18:01:25Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.