論文の概要: Neural ATTF: A Scalable Solution to Lifelong Multi-Agent Path Planning
- arxiv url: http://arxiv.org/abs/2504.15130v1
- Date: Mon, 21 Apr 2025 14:25:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 14:55:03.280515
- Title: Neural ATTF: A Scalable Solution to Lifelong Multi-Agent Path Planning
- Title(参考訳): Neural ATTF: 生涯にわたるマルチエージェントパス計画のためのスケーラブルなソリューション
- Authors: Kushal Shah, Jihyun Park, Seung-Kyum Choi,
- Abstract要約: 本稿では,優先度誘導タスクマッチング(PGTM)モジュールとデータ駆動経路計画法であるNeural STA*(Space-Time A*)を組み合わせた新しいアルゴリズムを提案する。
TPTS, CENTRAL, RMCA, LNS-PBS, LNS-wPBS などの最先端の MAPD アルゴリズムに対するテストは, Neural ATTF の優れたスケーラビリティ, ソリューション品質, 計算効率を示す。
- 参考スコア(独自算出の注目度): 0.5701273481078372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-Agent Pickup and Delivery (MAPD) is a fundamental problem in robotics, particularly in applications such as warehouse automation and logistics. Existing solutions often face challenges in scalability, adaptability, and efficiency, limiting their applicability in dynamic environments with real-time planning requirements. This paper presents Neural ATTF (Adaptive Task Token Framework), a new algorithm that combines a Priority Guided Task Matching (PGTM) Module with Neural STA* (Space-Time A*), a data-driven path planning method. Neural STA* enhances path planning by enabling rapid exploration of the search space through guided learned heuristics and ensures collision avoidance under dynamic constraints. PGTM prioritizes delayed agents and dynamically assigns tasks by prioritizing agents nearest to these tasks, optimizing both continuity and system throughput. Experimental evaluations against state-of-the-art MAPD algorithms, including TPTS, CENTRAL, RMCA, LNS-PBS, and LNS-wPBS, demonstrate the superior scalability, solution quality, and computational efficiency of Neural ATTF. These results highlight the framework's potential for addressing the critical demands of complex, real-world multi-agent systems operating in high-demand, unpredictable settings.
- Abstract(参考訳): マルチエージェントピックアップ・デリバリ(MAPD)は、特に倉庫の自動化やロジスティクスといったアプリケーションにおいて、ロボット工学における基本的な問題である。
既存のソリューションは、しばしばスケーラビリティ、適応性、効率性の課題に直面し、リアルタイムの計画要件を持つ動的環境における適用性を制限する。
本稿では、優先度誘導タスクマッチング(PGTM)モジュールとデータ駆動経路計画法であるNeural STA*(Space-Time A*)を組み合わせた新しいアルゴリズムであるNeural ATTF(Adaptive Task Token Framework)を提案する。
ニューラルSTA*は、ガイド付き学習ヒューリスティックによる探索空間の迅速な探索を可能にし、動的制約下での衝突回避を保証することにより、経路計画を強化する。
PGTMは遅延エージェントを優先順位付けし、これらのタスクに最も近いエージェントを優先順位付けすることでタスクを動的に割り当て、連続性とシステムのスループットの両方を最適化する。
TPTS, CENTRAL, RMCA, LNS-PBS, LNS-wPBS などの最先端の MAPD アルゴリズムに対する実験評価により, ニューラルATTF の優れたスケーラビリティ, ソリューション品質, 計算効率が示された。
これらの結果は、高要求で予測不可能な設定で動作する複雑な実世界のマルチエージェントシステムの重要な要求に対処するフレームワークの可能性を強調している。
関連論文リスト
- Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation [2.8169258551959544]
本稿では、グラフニューラルネットワーク(GNN)、深層強化学習(DRL)、マルチエージェント協調と集合タスク実行の強化のためのトランスフォーマーベースのメカニズムを統合する新しいフレームワークを提案する。
提案手法はGNNを用いて,適応グラフ構築によるエージェントエージェントとエージェントゴールの相互作用をモデル化し,制約付き通信下での効率的な情報集約と意思決定を可能にする。
論文 参考訳(メタデータ) (2025-04-11T01:46:18Z) - An Expectation-Maximization Algorithm-based Autoregressive Model for the Fuzzy Job Shop Scheduling Problem [12.862865254507177]
ファジィジョブショップスケジューリング問題(FJSSP)は、ジョブショップスケジューリング問題(JSSP)の革新的な拡張として現れる。
本稿では,FJSSPの分解能に対してファジィ情報を同化処理するニューラルネットワークの実現可能性について検討する。
論文 参考訳(メタデータ) (2025-01-11T10:20:16Z) - SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
複雑な無線環境における経路計画を実現するために,視覚言語モデル(VLM)を用いた新しい手法を提案する。
この目的のために、実世界の無線レイトレーシングデータを用いたデジタルツインからの洞察を探索する。
その結果, SCoTT はDP-WA* と比較して非常に近い平均経路ゲインを実現し, 同時に一貫した経路長が得られることがわかった。
論文 参考訳(メタデータ) (2024-11-27T10:45:49Z) - DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach [16.139481340656552]
本稿では,マルチエージェント強化学習(MARL)と生成拡散モデル(GDM)を組み合わせた共同手法を提案する。
第2段階では,GDMのリバース・デノナイズ・プロセスを利用して,マルチエージェント・ディープ・Deep Deterministic Policy gradient(MADDPG)におけるアクタネットワークを置き換える新しいDNNタスク割当アルゴリズム(GDM-MADDPG)を導入する。
シミュレーションの結果,提案アルゴリズムは,経路計画,情報化時代(AoI),エネルギー消費,タスク負荷分散の観点から,ベンチマークに比較して良好な性能を示した。
論文 参考訳(メタデータ) (2024-11-13T02:41:02Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Structural Knowledge-Driven Meta-Learning for Task Offloading in
Vehicular Networks with Integrated Communications, Sensing and Computing [21.50450449083369]
タスクオフロードは、オンボードコンピューティングリソースが限られているため、遅延に敏感な車両用アプリケーションの厳格な要件を満たすための潜在的なソリューションである。
本稿では,モデルに基づくAMアルゴリズムとニューラルネットワークを併用した,創造的構造的知識駆動型メタラーニング(SKDML)手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T03:31:59Z) - Graph Neural Networks for the Offline Nanosatellite Task Scheduling Problem [6.864319769054665]
本研究では,グラフニューラルネットワーク(GNN)を用いて,ナノサテライトタスクをより効率的にスケジュールする方法を検討する。
目標は、QoS(Quality-of-Service)を考慮して、軌道上で実行するタスクの最適なスケジュールを見つけることである。
論文 参考訳(メタデータ) (2023-03-24T03:17:28Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - Jump Operator Planning: Goal-Conditioned Policy Ensembles and Zero-Shot
Transfer [71.44215606325005]
本稿では,シーケンシャルなサブゴールタスクの超指数空間における解を高速に計算するための,Jump-Operator Dynamic Programmingという新しいフレームワークを提案する。
このアプローチでは、時間的に拡張された行動として機能する、再利用可能な目標条件付き警察のアンサンブルを制御する。
すると、この部分空間上の目的関数のクラスを、解がグラウンド化に不変であるものとして特定し、最適ゼロショット移動をもたらす。
論文 参考訳(メタデータ) (2020-07-06T05:13:20Z) - STDPG: A Spatio-Temporal Deterministic Policy Gradient Agent for Dynamic
Routing in SDN [6.27420060051673]
ソフトウェア定義ネットワーク(SDN)における動的ルーティングは、集中的な意思決定問題と見なすことができる。
本稿では,SDNにおける動的ルーティングのための新しいモデルフリーフレームワークを提案する。
STDPGは、平均的なエンドツーエンド遅延の観点から、より良いルーティングソリューションを実現する。
論文 参考訳(メタデータ) (2020-04-21T07:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。