The Synthetic Imputation Approach: Generating Optimal Synthetic Texts For Underrepresented Categories In Supervised Classification Tasks
- URL: http://arxiv.org/abs/2504.15160v1
- Date: Mon, 21 Apr 2025 15:07:26 GMT
- Title: The Synthetic Imputation Approach: Generating Optimal Synthetic Texts For Underrepresented Categories In Supervised Classification Tasks
- Authors: Joan C. Timoneda,
- Abstract summary: It is often difficult to find sufficient examples for all categories in a task when building a high-quality training set.<n>I propose a solution, the synthetic imputation approach.<n>This approach generates synthetic texts based on careful prompting and five original examples drawn randomly with replacement from the sample.<n>With 75 original examples or more, synthetic imputation's performance is on par with a full sample of original texts, and overfitting remains low, predictable and correctable with 50 original samples.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Encoder-decoder Large Language Models (LLMs), such as BERT and RoBERTa, require that all categories in an annotation task be sufficiently represented in the training data for optimal performance. However, it is often difficult to find sufficient examples for all categories in a task when building a high-quality training set. In this article, I describe this problem and propose a solution, the synthetic imputation approach. Leveraging a generative LLM (GPT-4o), this approach generates synthetic texts based on careful prompting and five original examples drawn randomly with replacement from the sample. This approach ensures that new synthetic texts are sufficiently different from the original texts to reduce overfitting, but retain the underlying substantive meaning of the examples to maximize out-of-sample performance. With 75 original examples or more, synthetic imputation's performance is on par with a full sample of original texts, and overfitting remains low, predictable and correctable with 50 original samples. The synthetic imputation approach provides a novel role for generative LLMs in research and allows applied researchers to balance their datasets for best performance.
Related papers
- Less is More: Adaptive Coverage for Synthetic Training Data [20.136698279893857]
This study introduces a novel sampling algorithm, based on the maximum coverage problem, to select a representative subset from a synthetically generated dataset.
Our results demonstrate that training a classifier on this contextually sampled subset achieves superior performance compared to training on the entire dataset.
arXiv Detail & Related papers (2025-04-20T06:45:16Z) - Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.
Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - Synthetic Text Generation for Training Large Language Models via Gradient Matching [27.74603049449281]
We propose the first theoretically rigorous approach for generating synthetic human-readable text.<n>In doing so, the generated synthetic text can guarantee convergence of the model to a close neighborhood of the solution obtained by fine-tuning on real data.
arXiv Detail & Related papers (2025-02-24T19:49:15Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - SynthesizRR: Generating Diverse Datasets with Retrieval Augmentation [55.2480439325792]
We study the synthesis of six datasets, covering topic classification, sentiment analysis, tone detection, and humor.
We find that SynthesizRR greatly improves lexical and semantic diversity, similarity to human-written text, and distillation performance.
arXiv Detail & Related papers (2024-05-16T12:22:41Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
We introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps.
We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages.
Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data.
arXiv Detail & Related papers (2023-12-31T02:13:18Z) - ProGen: Progressive Zero-shot Dataset Generation via In-context Feedback [21.168991554983815]
We propose a progressive zero-shot dataset generation framework, ProGen, to guide the generation of new training data.
We show ProGen achieves on-par or superior performance with only 1% synthetic dataset size.
arXiv Detail & Related papers (2022-10-22T02:07:10Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - Finding needles in a haystack: Sampling Structurally-diverse Training
Sets from Synthetic Data for Compositional Generalization [33.30539396439008]
We investigate automatic generation of synthetic utterance-program pairs for improving compositional generalization in semantic parsing.
We select a subset of synthetic examples that are structurally-diverse and use them to improve compositional generalization.
We evaluate our approach on a new split of the schema2QA dataset, and show that it leads to dramatic improvements in compositional generalization as well as moderate improvements in the traditional i.i.d setup.
arXiv Detail & Related papers (2021-09-06T16:20:47Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.