論文の概要: Breast density in MRI: an AI-based quantification and relationship to assessment in mammography
- arxiv url: http://arxiv.org/abs/2504.15192v1
- Date: Mon, 21 Apr 2025 16:01:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 15:59:55.170146
- Title: Breast density in MRI: an AI-based quantification and relationship to assessment in mammography
- Title(参考訳): MRIにおける乳腺密度 : AIによる定量化とマンモグラフィにおける評価との関係
- Authors: Yaqian Chen, Lin Li, Hanxue Gu, Haoyu Dong, Derek L. Nguyen, Allan D. Kirk, Maciej A. Mazurowski, E. Shelley Hwang,
- Abstract要約: マンモグラフィーの乳腺密度は乳がんのリスク因子として確立されている。
近年,乳房MRIはマンモグラフィーの補助として注目されている。
そこで本研究では, 3つのMRIデータセットを用いて, 正常乳房の乳房密度を評価するために, 社内機械学習アルゴリズムを適用した。
- 参考スコア(独自算出の注目度): 7.821989375292391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mammographic breast density is a well-established risk factor for breast cancer. Recently there has been interest in breast MRI as an adjunct to mammography, as this modality provides an orthogonal and highly quantitative assessment of breast tissue. However, its 3D nature poses analytic challenges related to delineating and aggregating complex structures across slices. Here, we applied an in-house machine-learning algorithm to assess breast density on normal breasts in three MRI datasets. Breast density was consistent across different datasets (0.104 - 0.114). Analysis across different age groups also demonstrated strong consistency across datasets and confirmed a trend of decreasing density with age as reported in previous studies. MR breast density was correlated with mammographic breast density, although some notable differences suggest that certain breast density components are captured only on MRI. Future work will determine how to integrate MR breast density with current tools to improve future breast cancer risk prediction.
- Abstract(参考訳): マンモグラフィーの乳腺密度は乳がんのリスク因子として確立されている。
近年,乳房MRIが乳房造影の補助的役割を担うことへの関心が高まっており,このモダリティは乳房組織の直交的かつ定量的な評価を提供する。
しかし、その3D特性は、スライスにまたがる複雑な構造の展開と集約に関する解析的な課題を生じさせる。
そこで本研究では, 3つのMRIデータセットを用いて, 正常乳房の乳房密度を評価するために, 社内機械学習アルゴリズムを適用した。
乳腺密度は異なるデータセット (0.104 - 0.114) で一致していた。
異なる年齢グループを対象とした分析では、データセット間で強い一貫性が示され、以前の研究で報告されたように、年齢とともに密度が低下する傾向が確認された。
MR乳房密度はマンモグラフィーの乳房密度と相関したが,いくつかの顕著な相違は,特定の乳房密度成分がMRIでのみ捕捉されることを示唆している。
将来の研究は、将来の乳がんリスク予測を改善するために、MR乳房密度を現在のツールと統合する方法を決定する。
関連論文リスト
- Deep Learning Predicts Mammographic Breast Density in Clinical Breast Ultrasound Images [0.0]
マンモグラフィーの乳腺密度は 乳がんの最大の危険因子の1つです
乳房超音波(BUS)は、乳がんスクリーニング法の一種である。
本研究の目的は,BUS画像からBI-RADS乳房密度を予測する人工知能(AI)モデルを検討することである。
論文 参考訳(メタデータ) (2024-10-31T21:28:20Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Longitudinal Mammogram Risk Prediction [6.28887425442237]
我々は最先端の機械学習モデルを拡張し、任意の数の縦マンモグラフィーを摂取し、将来の乳がんリスクを予測する。
以上の結果から,より長い歴史(例年4回のマンモグラム)が将来の乳癌のリスクを予測する精度を著しく向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-29T19:52:09Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCaは、乳がん患者の画像データであるボリュームCDI$s$の複数機関のオープンソースベンチマークデータセットである。
Cancer-Net BCaは、機械学習の進歩を加速し、がんと戦う臨床医を助ける、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
論文 参考訳(メタデータ) (2023-04-12T05:41:44Z) - Multi-Head Feature Pyramid Networks for Breast Mass Detection [48.24995569980701]
本稿では,MHFPN (Multi-head Feature pyramid Module) を提案する。
実験により、SOTA検出ベースラインと比較して、一般的に使用されるInbreastデータセットでは、我々の手法は6.58%(AP@50では6.58%、TPR@50では5.4%(TPR@50では5.4%)の改善が見られた。
論文 参考訳(メタデータ) (2023-02-22T03:02:52Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
深層学習に基づくコンピュータ支援検出システムは乳癌検出において優れた性能を示した。
高密度の乳房は、高密度の組織がマスを覆ったりシミュレートしたりできるため、検出性能が劣っている。
本研究は,高密度乳房における高密度フルフィールドデジタルマンモグラムを用いた質量検出性能の向上を目的とする。
論文 参考訳(メタデータ) (2022-09-20T15:57:12Z) - A multi-reconstruction study of breast density estimation using Deep
Learning [0.9449650062296825]
乳房密度推定はスクリーニング試験で行う重要な課題の1つである。
乳房密度推定のためのディープラーニング研究は、ニューラルネットワークのトレーニングに単一のモダリティのみを使用する。
本稿では,全てのモダリティを一度にトレーニングしたニューラルネットワークが,単一モダリティでトレーニングしたニューラルネットワークよりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-02-16T18:34:08Z) - Deep-LIBRA: Artificial intelligence method for robust quantification of
breast density with independent validation in breast cancer risk assessment [2.0369879867185143]
現在の連邦法では、乳房検診中の女性全員の乳房密度の報告を義務付けている。
本稿では,デジタルマンモグラムから乳房比密度(PD)を推定する人工知能(AI)手法を提案する。
論文 参考訳(メタデータ) (2020-11-13T15:21:17Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。