論文の概要: M$^2$AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding
- arxiv url: http://arxiv.org/abs/2504.15225v1
- Date: Mon, 21 Apr 2025 16:57:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 15:57:25.443857
- Title: M$^2$AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding
- Title(参考訳): M$^2$AD:Global ScoringとCalibrated Thresholdingによるマルチセンサマルチシステム異常検出
- Authors: Sarah Alnegheimish, Zelin He, Matthew Reimherr, Akash Chandrayan, Abhinav Pradhan, Luca D'Angelo,
- Abstract要約: 複数のシステムからの時系列データにおける教師なし異常検出のためのフレームワークであるM$2$ADを導入する。
M$2$ADは、通常の条件下での予測された振る舞いを捉えるために、潜在的な異常の指標として残余を用いる。
実証的に、M$2$ADは既存の手法を平均で21%上回っている。
- 参考スコア(独自算出の注目度): 7.098854184592838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the widespread availability of sensor data across industrial and operational systems, we frequently encounter heterogeneous time series from multiple systems. Anomaly detection is crucial for such systems to facilitate predictive maintenance. However, most existing anomaly detection methods are designed for either univariate or single-system multivariate data, making them insufficient for these complex scenarios. To address this, we introduce M$^2$AD, a framework for unsupervised anomaly detection in multivariate time series data from multiple systems. M$^2$AD employs deep models to capture expected behavior under normal conditions, using the residuals as indicators of potential anomalies. These residuals are then aggregated into a global anomaly score through a Gaussian Mixture Model and Gamma calibration. We theoretically demonstrate that this framework can effectively address heterogeneity and dependencies across sensors and systems. Empirically, M$^2$AD outperforms existing methods in extensive evaluations by 21% on average, and its effectiveness is demonstrated on a large-scale real-world case study on 130 assets in Amazon Fulfillment Centers. Our code and results are available at https://github.com/sarahmish/M2AD.
- Abstract(参考訳): 産業用および運用用システムにまたがるセンサデータの普及に伴い,複数システムからの異種時系列が頻繁に発生する。
異常検出は、予測保守を容易にするために重要である。
しかし、既存のほとんどの異常検出方法は単変量または単系統多変量データのために設計されており、複雑なシナリオでは不十分である。
そこで本研究では,マルチ変数時系列データにおける教師なし異常検出のためのフレームワークであるM$^2$ADを紹介する。
M$^2$ADは、通常の条件下での予測された振る舞いを捉えるために、潜在的な異常の指標として残余を用いる。
これらの残差は、ガウス混合モデルとガンマ校正により、グローバルな異常スコアに集約される。
理論的には、このフレームワークがセンサやシステム間の不均一性と依存性を効果的に解決できることを実証する。
実証的に、M$^2$ADは、既存の手法を平均21%の広範囲な評価で上回り、Amazon Fulfillment Centersにおける130の資産に関する大規模な実世界のケーススタディでその効果が実証されている。
私たちのコードと結果はhttps://github.com/sarahmish/M2AD.comで公開されています。
関連論文リスト
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
本研究では,データ拡張とソフトコントラスト学習の組み合わせを導入し,より正確に状態行動の多面的特性を捉えることを目的としている。
この二重戦略は、正常な状態と異常な状態を区別するモデルの能力を著しく向上させ、複数のデータセットと設定で障害検出性能が著しく向上する。
論文 参考訳(メタデータ) (2024-05-25T14:48:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers [44.344548601242444]
Weakly-supervised RESidual Transformer (WeakREST) という新しいフレームワークを導入し,高い異常検出精度を実現する。
画素単位の異常局所化タスクをブロック単位の分類問題に再構成する。
弱いラベルと残差に基づく表現との相互作用を処理できるResMixMatchアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-06-06T08:19:30Z) - Coincident Learning for Unsupervised Anomaly Detection [8.383613150690785]
本稿では,マルチモーダルタスクに特化して設計されたCoADという新しい手法を提案する。
特徴空間の2つの異なるスライスにまたがるテキスト共起行動に基づいて異常を識別する。
本手法は,合成外れ値データセットとMNISTに基づく画像データセットを用いて図示し,実世界の2つのタスクにおける先行技術と比較する。
論文 参考訳(メタデータ) (2023-01-26T19:25:18Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - DeepFIB: Self-Imputation for Time Series Anomaly Detection [5.4921159672644775]
時系列異常検出(AD)は、金融および医療監視における不正検出など、様々な応用において重要な役割を果たす。
時系列におけるADのための新しい自己教師型学習手法,すなわちemphDeepFIBを提案する。
我々は、DeepFIBが最先端の手法を大きなマージンで上回り、F1スコアの相対的な改善を65.2%まで達成していることを示す。
論文 参考訳(メタデータ) (2021-12-12T14:28:06Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。