Proximate integrability and exact revivals in staggered Rydberg ladders
- URL: http://arxiv.org/abs/2504.15230v2
- Date: Tue, 05 Aug 2025 09:39:26 GMT
- Title: Proximate integrability and exact revivals in staggered Rydberg ladders
- Authors: Mainak Pal, Tista Banerjee,
- Abstract summary: We investigate the fate of out-of-equilibrium quantum dynamics in a model of Rydberg atoms arranged in a square ladder geometry.<n>As the strength is tuned, the model exhibits a wide class of dynamical phenomena.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cold Rydberg atoms trapped in an array of optical tweezers can be manipulated using laser light. We investigate the fate of out-of-equilibrium quantum dynamics in a model of Rydberg atoms arranged in a square ladder geometry within the strong blockade regime, with a detuning profile staggered along the longer direction. As the staggering strength is tuned, the model exhibits a wide class of dynamical phenomena, ranging from quantum many-body scars, integrability-induced slow dynamics and approximate Krylov fractures. Furthermore, by leveraging the chiral nature of the spectrum, we design Floquet protocols which result in dynamical signatures reminiscent of discrete-time-crystalline order and exact Floquet-flat-bands.
Related papers
- Quantum channel for modeling spin-motion dephasing in Rydberg chains [44.99833362998488]
We introduce a quantum channel to model the dissipative dynamics resulting from the coupling between spin and motional degrees of freedom in chains of neutral atoms with Rydberg interactions.<n>We benchmark the accuracy of our approach against exact diagonalization for small systems, identifying its regime of validity and the onset of perturbative breakdown.<n>We then apply the quantum channel to compute fidelity loss during transport of single-spin excitations across extended Rydberg chains in intractable regimes via exact diagonalization.
arXiv Detail & Related papers (2025-06-30T17:37:38Z) - Variational Quantum Simulation of the Interacting Schwinger Model on a Trapped-Ion Quantum Processor [26.47874938214435]
In this work, we explore the multi-flavor lattice Schwinger model - a toy model inspired by quantum chromodynamics.
We employ a parametric quantum circuit executed on our quantum processor to identify ground states in different parameter regimes of the model.
The resulting states are analyzed via quantum state tomography, to reveal how characteristic properties such as correlations in the output state change.
arXiv Detail & Related papers (2025-04-29T14:43:57Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Floquet-engineered Emergent Massive Nambu-Goldstone Modes [0.6757476692230008]
We implement massive Nambu-Goldstone quasi-particles in driven many-body systems.<n>We certify the existence of the massive Nambu-Goldstone mode from the dynamics of specific observables.
arXiv Detail & Related papers (2024-09-03T13:48:26Z) - Generalized hydrodynamics of integrable quantum circuits [0.0]
We study the integrable Trotterization of a prototypical integrable model, the XXZ Heisenberg spin chain.<n>We find that a single microscopic defect at the junction, such as the addition of a single qubit, may change the nonequilibrium macrostate appearing at late time.
arXiv Detail & Related papers (2024-08-01T11:25:26Z) - Quantum dimer models with Rydberg gadgets [0.0]
Rydberg blockade mechanism is an important ingredient in quantum simulators based on neutral atom arrays.
We propose a method to transform the underlying Rydberg blockade into more general constraints.
We show that these states can be dynamically prepared with high fidelity.
arXiv Detail & Related papers (2024-02-16T12:54:06Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators [1.3367376307273382]
We consider the spin-$1/2$ quantum link formulation of $1+1$D quantum electrodynamics with a topological $theta$-angle.
We show an interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation.
arXiv Detail & Related papers (2023-01-18T19:00:01Z) - Quantum Spin Puddles and Lakes: NISQ-Era Spin Liquids from
Non-Equilibrium Dynamics [0.0]
We show how a simple parameter sweep can dynamically project a family of initial product states into the constrained space.
We analytically and numerically show that this method efficiently prepares a spin liquid in finite-sized regions.
Our work opens up a new avenue in the study of non-equilibrium physics.
arXiv Detail & Related papers (2022-11-02T18:00:01Z) - Trimer quantum spin liquid in a honeycomb array of Rydberg atoms [0.0]
We show the concrete realization of a fundamentally different class of spin liquids in a honeycomb array of Rydberg atoms.
In the regime where third-nearest-neighbor atoms lie within the Rydberg blockade, we find a novel ground state.
The fidelity of this trimer spin liquid state can be enhanced via dynamical preparation.
arXiv Detail & Related papers (2022-11-01T18:00:00Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Phases and dynamics of ultracold bosons in a tilted optical lattice [0.0]
We present a brief overview of the phases and dynamics of ultracold bosons in an optical lattice in the presence of a tilt.
We chart the relation of this model to the recently studied system of ultracold Rydberg atoms.
arXiv Detail & Related papers (2021-09-06T18:00:02Z) - Gauge Invariant and Anyonic Symmetric Transformer and RNN Quantum States for Quantum Lattice Models [16.987004075528606]
We develop a general approach to constructing gauge invariant or anyonic symmetric autoregressive neural network quantum states.
We prove that our methods can provide exact representation for the ground and excited states of the 2D and 3D toric codes.
We variationally optimize our symmetry incorporated autoregressive neural networks for ground states as well as real-time dynamics for a variety of models.
arXiv Detail & Related papers (2021-01-18T18:55:21Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Raman Sideband Cooling in Optical Tweezer Arrays for Rydberg Dressing [0.0]
Single neutral atoms trapped in optical tweezers and laser-coupled to Rydberg states provide a fast and flexible platform to generate atomic arrays for quantum simulation.
arXiv Detail & Related papers (2020-10-15T15:56:57Z) - Dissipative dynamics at first-order quantum transitions [0.0]
This issue is studied within the paradigmatic one-dimensional quantum Ising model.
We analyze the out-of-equilibrium dynamics arising from quenches of the Hamiltonian parameters.
We observe a regime where the system develops a nontrivial dynamic scaling behavior.
arXiv Detail & Related papers (2020-09-23T14:08:21Z) - Vibrational dressing in Kinetically Constrained Rydberg Spin Systems [0.0]
We discuss a facilitated spin system inspired by recent progress in the realization of Rydberg quantum simulators.
This platform allows to control and investigate the interplay between facilitation dynamics and the coupling of spin degrees of freedom to lattice vibrations.
We show that this leads to the formation of polaronic quasiparticles which are formed by many-body spin states dressed by phonons.
arXiv Detail & Related papers (2020-02-28T19:23:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.