論文の概要: The Hardness of Learning Quantum Circuits and its Cryptographic Applications
- arxiv url: http://arxiv.org/abs/2504.15343v1
- Date: Mon, 21 Apr 2025 18:00:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-01 02:03:17.375988
- Title: The Hardness of Learning Quantum Circuits and its Cryptographic Applications
- Title(参考訳): 量子回路学習の難しさと暗号応用
- Authors: Bill Fefferman, Soumik Ghosh, Makrand Sinha, Henry Yuen,
- Abstract要約: ランダムな量子回路の出力状態の学習やクローン化に関する具体的な硬さの仮定は、セキュアな量子暗号の基礎として利用できることを示す。
セキュアな一方向ステートジェネレータ(OWSG)、デジタルシグネチャスキーム、量子ビットコミットメント、秘密鍵暗号スキームを構築した。
- 参考スコア(独自算出の注目度): 1.2116854758481395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that concrete hardness assumptions about learning or cloning the output state of a random quantum circuit can be used as the foundation for secure quantum cryptography. In particular, under these assumptions we construct secure one-way state generators (OWSGs), digital signature schemes, quantum bit commitments, and private key encryption schemes. We also discuss evidence for these hardness assumptions by analyzing the best-known quantum learning algorithms, as well as proving black-box lower bounds for cloning and learning given state preparation oracles. Our random circuit-based constructions provide concrete instantiations of quantum cryptographic primitives whose security do not depend on the existence of one-way functions. The use of random circuits in our constructions also opens the door to NISQ-friendly quantum cryptography. We discuss noise tolerant versions of our OWSG and digital signature constructions which can potentially be implementable on noisy quantum computers connected by a quantum network. On the other hand, they are still secure against noiseless quantum adversaries, raising the intriguing possibility of a useful implementation of an end-to-end cryptographic protocol on near-term quantum computers. Finally, our explorations suggest that the rich interconnections between learning theory and cryptography in classical theoretical computer science also extend to the quantum setting.
- Abstract(参考訳): ランダムな量子回路の出力状態の学習やクローン化に関する具体的な硬さの仮定は、セキュアな量子暗号の基礎として利用できることを示す。
特に、これらの仮定の下で、安全な一方向状態生成器(OWSG)、デジタルシグネチャスキーム、量子ビットコミットメント、秘密鍵暗号スキームを構築します。
また、最もよく知られた量子学習アルゴリズムを解析し、与えられた状態準備オラクルのクローン化と学習のためのブラックボックスの下限を証明し、これらの硬さの仮定の証拠についても論じる。
我々のランダム回路に基づく構造は、一方向関数の存在に依存しない量子暗号プリミティブの具体的なインスタンス化を提供する。
我々の構成におけるランダム回路の使用は、NISQに優しい量子暗号への扉を開く。
我々はOWSGの耐雑音バージョンと、量子ネットワークに接続されたノイズの多い量子コンピュータ上で実装可能なデジタル署名構造について論じる。
一方で、ノイズのない量子敵に対しても安全であり、短期量子コンピュータ上でのエンドツーエンドの暗号プロトコルの有用な実装の興味深い可能性を高めている。
最後に,古典理論計算機科学における学習理論と暗号の相互関係が量子環境にも及んでいることを示唆する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Designing Hash and Encryption Engines using Quantum Computing [2.348041867134616]
データセキュリティを強化するために,量子ベースのハッシュ関数と暗号化について検討する。
量子コンピューティングと古典的手法の統合は、量子コンピューティングの時代におけるデータ保護の可能性を示している。
論文 参考訳(メタデータ) (2023-10-26T14:49:51Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Unclonability and Quantum Cryptanalysis: From Foundations to
Applications [0.0]
不規則性(Unclonability)は、量子理論の基本概念であり、量子情報の主要な非古典的性質の1つである。
我々は、量子世界、すなわち量子物理学的不閉性(quantum physical unclonability)という新しい非閉性の概念を導入する。
本稿では、暗号資源として、この新しいタイプの無拘束性(unclonability)のいくつかの応用について論じ、確実に安全な量子プロトコルを設計する。
論文 参考訳(メタデータ) (2022-10-31T17:57:09Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - A practical quantum encryption protocol with varying encryption
configurations [0.0]
本稿では、量子アルゴリズムを用いて、量子状態に基づくテキスト暗号のブロックを生成する量子暗号化プロトコルを提案する。
量子暗号化プロトコルの主な特徴は、各ブロックの暗号化構成が以前のブロックによって決定されることである。
論文 参考訳(メタデータ) (2021-01-22T20:09:03Z) - A quantum encryption design featuring confusion, diffusion, and mode of
operation [0.0]
本稿では、メッセージの暗号化に量子状態生成プロセスを利用する非OTP量子暗号方式を提案する。
本質的には非OTP量子ブロック暗号であり、この手法は以下の特徴を持つ既存の手法に対して際立っている。
論文 参考訳(メタデータ) (2020-10-06T22:23:30Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
量子鍵分布(QKD)システムのセキュリティ脆弱性について概説する。
我々は主に、盗聴攻撃の源となるバックフラッシュ光(backflash light)と呼ばれる特定の効果に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-23T18:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。