Branch-and-bound digitized counterdiabatic quantum optimization
- URL: http://arxiv.org/abs/2504.15367v1
- Date: Mon, 21 Apr 2025 18:19:19 GMT
- Title: Branch-and-bound digitized counterdiabatic quantum optimization
- Authors: Anton Simen, Sebastián V. Romero, Alejandro Gomez Cadavid, Enrique Solano, Narendra N. Hegade,
- Abstract summary: Branch-and-bound algorithms effectively solve convex optimization problems, relying on the relaxation the objective function to obtain tight lower bounds.<n>We propose a branch-and-bound digitized counterdiabatic quantum optimization (BB-DCQO) algorithm that addresses the relaxation difficulties.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Branch-and-bound algorithms effectively solve combinatorial optimization problems, relying on the relaxation of the objective function to obtain tight lower bounds. While this is straightforward for convex objective functions, higher-order formulations pose challenges due to their inherent non-convexity. In this work, we propose branch-and-bound digitized counterdiabatic quantum optimization (BB-DCQO), a quantum algorithm that addresses the relaxation difficulties in higher-order unconstrained binary optimization (HUBO) problems. By employing bias fields as approximate solutions to the relaxed problem, we iteratively enhance the quality of the results compared to the bare bias-field digitized counterdiabatic quantum optimization (BF-DCQO) algorithm. We refer to this enhanced method as BBB-DCQO. In order to benchmark it against simulated annealing (SA), we apply it on sparse HUBO instances with up to $156$ qubits using tensor network simulations. To explore regimes that are less tractable for classical simulations, we experimentally apply BBB-DCQO to denser problems using up to 100 qubits on IBM quantum hardware. We compare our results with SA and a greedy-tuned quantum annealing baseline. In both simulations and experiments, BBB-DCQO consistently achieved higher-quality solutions with significantly reduced computational overhead, showcasing the effectiveness of integrating counterdiabatic quantum methods into branch-and-bound to address hard non-convex optimization tasks.
Related papers
- Practical Application of the Quantum Carleman Lattice Boltzmann Method in Industrial CFD Simulations [44.99833362998488]
This work presents a practical numerical assessment of a hybrid quantum-classical approach to CFD based on the Lattice Boltzmann Method (LBM)<n>We evaluate this method on three benchmark cases featuring different boundary conditions, periodic, bounceback, and moving wall.<n>Our results confirm the validity of the approach, achieving median error fidelities on the order of $10-3$ and success probabilities sufficient for practical quantum state sampling.
arXiv Detail & Related papers (2025-04-17T15:41:48Z) - Bias-Field Digitized Counterdiabatic Quantum Algorithm for Higher-Order Binary Optimization [39.58317527488534]
We present an enhanced bias-field digitized counterdiabatic quantum optimization (BF-DCQO) algorithm to address higher-order unconstrained binary optimization (HUBO) problems.
Our protocol is experimentally validated using 156 qubits on an IBM quantum processor with a heavy-hex architecture.
arXiv Detail & Related papers (2024-09-05T17:38:59Z) - Solving QUBOs with a quantum-amenable branch and bound method [0.3749861135832072]
We describe and experimentally validate an exact classical branch and bound solver for quadratic unconstrained binary optimization problems.
Our solver leverages cheap-to-implement bounds from the literature previously proposed for Ising models.
We detail a variety of techniques from high-performance computing and operations research used to boost solver performance.
arXiv Detail & Related papers (2024-07-29T17:13:01Z) - Quantum optimization using a 127-qubit gate-model IBM quantum computer can outperform quantum annealers for nontrivial binary optimization problems [0.0]
We introduce a comprehensive quantum solver for binary optimization problems on gate-model quantum computers.
It consistently delivers correct solutions for problems with up to 127 qubits.
We benchmark this solver on IBM quantum computers for several classically nontrivial unconstrained binary optimization problems.
arXiv Detail & Related papers (2024-06-03T19:08:01Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Quantum Bayesian Optimization [64.58749619145908]
We introduce the quantum-Gaussian process-upper confidence bound (Q-GP-UCB) algorithm.
It is the first BO algorithm able to achieve a regret upper bound of O(polylog T), which is significantly smaller than its regret lower bound of Omega(sqrt(T)) in the classical setting.
Thanks to our novel analysis of the confidence ellipsoid, our Q-GP-UCB with the linear kernel achieves a smaller regret than the quantum linear UCB algorithm.
arXiv Detail & Related papers (2023-10-09T03:10:42Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
Vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry.
In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables.
arXiv Detail & Related papers (2023-06-14T13:44:35Z) - NISQ-compatible approximate quantum algorithm for unconstrained and
constrained discrete optimization [0.0]
We present an approximate gradient-based quantum algorithm for hardware-efficient circuits with amplitude encoding.
We show how simple linear constraints can be directly incorporated into the circuit without additional modification of the objective function with penalty terms.
arXiv Detail & Related papers (2023-05-23T16:17:57Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.