Breaking and resurgence of symmetry in the non-Hermitian Su-Schrieffer-Heeger model in photonic waveguides
- URL: http://arxiv.org/abs/2304.05748v4
- Date: Thu, 9 May 2024 09:59:13 GMT
- Title: Breaking and resurgence of symmetry in the non-Hermitian Su-Schrieffer-Heeger model in photonic waveguides
- Authors: E. Slootman, W. Cherifi, L. Eek, R. Arouca, E. J. Bergholtz, M. Bourennane, C. Morais Smith,
- Abstract summary: In symmetry-protected topological systems, symmetries are responsible for protecting surface states.
By engineering losses that break the symmetry protecting a topological Hermitian phase, we show that a new genuinely non-Hermitian symmetry emerges.
We classify the systems in terms of the (non-Hermitian) symmetries that are present and calculate the corresponding topological invariants.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symmetry is one of the cornerstones of modern physics and has profound implications in different areas. In symmetry-protected topological systems, symmetries are responsible for protecting surface states, which are at the heart of the fascinating properties exhibited by these materials. When the symmetry protecting the edge mode is broken, the topological phase becomes trivial. By engineering losses that break the symmetry protecting a topological Hermitian phase, we show that a new genuinely non-Hermitian symmetry emerges, which protects and selects one of the boundary modes: the topological monomode. Moreover, the topology of the non-Hermitian system can be characterized by an effective Hermitian Hamiltonian in a higher dimension. To corroborate the theory, we experimentally investigated the non-Hermitian 1D and 2D SSH models using photonic lattices and observed dynamically generated monomodes in both cases. We classify the systems in terms of the (non-Hermitian) symmetries that are present and calculate the corresponding topological invariants.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Robust Symmetry Detection via Riemannian Langevin Dynamics [39.342336146118015]
We propose a novel symmetry detection method that marries classical symmetry detection techniques with recent advances in generative modeling.
Specifically, we apply Langevin dynamics to a symmetry space to enhance robustness against noise.
We provide empirical results on a variety of shapes that suggest our method is not only robust to noise, but can also identify both partial and global symmetries.
arXiv Detail & Related papers (2024-09-18T02:28:20Z) - Non-invertible and higher-form symmetries in 2+1d lattice gauge theories [0.0]
We explore exact generalized symmetries in the standard 2+1d lattice $mathbbZ$ gauge theory coupled to the Ising model.
One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases.
We discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation.
arXiv Detail & Related papers (2024-05-21T18:00:00Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Non-Hermitian skin effect enforced by nonsymmorphic symmetries [6.954556783677555]
Crystal symmetries play an essential role in band structures of non-Hermitian Hamiltonian.
We propose a non-Hermitian skin effect enforced by nonsymmorphic symmetries.
arXiv Detail & Related papers (2023-06-15T07:50:32Z) - Mesoscopic M\"obius ladder lattices as non-Hermitian model systems [0.0]
We focus on two realizations of non-Hermitian physics in mesoscopic systems.
First, we consider spiral optical microcavities in which the asymmetric scattering between whispering gallery modes induces the non-Hermitian behaviour.
Second, for parity-time (PT) symmetric ladder lattices we compare circular and M"obius geometries.
arXiv Detail & Related papers (2022-05-03T17:10:36Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Band topology of pseudo-Hermitian phases through tensor Berry
connections and quantum metric [6.033106259681307]
We show that several pseudo-Hermitian phases in two and three dimensions can be built by employing $q$-deformed matrices.
We analyze their topological bulk states through non-Hermitian generalizations of Abelian and non-Abelian tensor Berry connections and quantum metric.
arXiv Detail & Related papers (2021-06-17T16:51:13Z) - Simulating Exceptional Non-Hermitian Metals with Single-Photon
Interferometry [4.030017427802459]
We experimentally simulate in a photonic setting non-Hermitian (NH) metals characterized by the topological properties of their nodal band structures.
We focus on two distinct types of NH metals: two-dimensional systems with symmetry-protected ELs, and three-dimensional systems possessing symmetry-independent topological ELs in the form of knots.
arXiv Detail & Related papers (2020-11-03T18:00:49Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.