論文の概要: RepNet-VSR: Reparameterizable Architecture for High-Fidelity Video Super-Resolution
- arxiv url: http://arxiv.org/abs/2504.15649v1
- Date: Tue, 22 Apr 2025 07:15:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 21:54:33.688359
- Title: RepNet-VSR: Reparameterizable Architecture for High-Fidelity Video Super-Resolution
- Title(参考訳): RepNet-VSR:高忠実度ビデオ超解法のための並列化可能なアーキテクチャ
- Authors: Biao Wu, Diankai Zhang, Shaoli Liu, Si Gao, Chengjian Zheng, Ning Wang,
- Abstract要約: リアルタイム4xビデオ超解像のためのReizable Architecture for High Fidelity Video Super resolution method(RepNet-VSR)を提案する。
提案モデルでは,MediaTek Dimensity NPU上で180pから720pのPSNRを103ms/103msで処理することで,27.79dBのPSNRを実現する。
- 参考スコア(独自算出の注目度): 12.274092278786966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a fundamental challenge in visual computing, video super-resolution (VSR) focuses on reconstructing highdefinition video sequences from their degraded lowresolution counterparts. While deep convolutional neural networks have demonstrated state-of-the-art performance in spatial-temporal super-resolution tasks, their computationally intensive nature poses significant deployment challenges for resource-constrained edge devices, particularly in real-time mobile video processing scenarios where power efficiency and latency constraints coexist. In this work, we propose a Reparameterizable Architecture for High Fidelity Video Super Resolution method, named RepNet-VSR, for real-time 4x video super-resolution. On the REDS validation set, the proposed model achieves 27.79 dB PSNR when processing 180p to 720p frames in 103 ms per 10 frames on a MediaTek Dimensity NPU. The competition results demonstrate an excellent balance between restoration quality and deployment efficiency. The proposed method scores higher than the previous champion algorithm of MAI video super-resolution challenge.
- Abstract(参考訳): ビジュアルコンピューティングにおける根本的な課題として、ビデオ超解像(VSR)は、劣化した低解像度から高解像度ビデオシーケンスを再構成することに焦点を当てている。
深層畳み込みニューラルネットワークは、時空間超解像処理における最先端のパフォーマンスを実証しているが、その計算集約性は、リソース制約のあるエッジデバイス、特に電力効率とレイテンシの制約が共存するリアルタイムなモバイルビデオ処理シナリオにおいて、大きな展開課題を生じさせる。
本研究では,リアルタイム4xビデオ超解像のための高忠実度ビデオ超解像のためのReparameterizable Architecture(RepNet-VSR)を提案する。
REDS検証セットでは,MediaTek Dimensity NPU上で180pから720pのフレームを103ms/103msで処理すると,27.79dBのPSNRが得られる。
コンペの結果は、復元品質と配置効率のバランスが良好であることを示している。
提案手法は,MAIビデオ超解像チャレンジの従来のチャンピオンアルゴリズムよりも高いスコアを得る。
関連論文リスト
- Implicit Neural Representation for Video and Image Super-Resolution [4.960738913876514]
暗黙的ニューラル表現(INR)を用いた超解像の新手法を提案する。
提案手法は,低分解能入力と3次元高分解能グリッドのみを用いた高分解能再構成を容易にする。
提案手法であるSR-INRは,フレームと画像間の一貫した詳細を維持し,時間的安定性を著しく向上させる。
論文 参考訳(メタデータ) (2025-03-06T17:58:55Z) - VISION-XL: High Definition Video Inverse Problem Solver using Latent Image Diffusion Models [58.464465016269614]
本稿では,遅延画像拡散モデルを用いた高精細ビデオ逆問題の解法を提案する。
提案手法は,NVIDIA 4090 GPUの1フレームあたり6秒未満でHD解像度の再構成を実現する。
論文 参考訳(メタデータ) (2024-11-29T08:10:49Z) - RTSR: A Real-Time Super-Resolution Model for AV1 Compressed Content [10.569678424799616]
超解像度(SR)は、映像コンテンツの視覚的品質を改善するための重要な技術である。
リアルタイム再生をサポートするためには,高速SRモデルの実装が重要である。
本稿では,圧縮映像の視覚的品質を高めるために,低複雑さSR手法RTSRを提案する。
論文 参考訳(メタデータ) (2024-11-20T14:36:06Z) - On the Generalization of BasicVSR++ to Video Deblurring and Denoising [98.99165593274304]
我々は、BasicVSR++をビデオ復元タスクのための汎用フレームワークに拡張する。
入力と出力が同じ空間サイズを持つタスクでは、入力解像度はストライド畳み込みによって削減され効率が維持される。
BasicVSR++からの最小限の変更だけで、提案するフレームワークは、様々なビデオ復元タスクにおいて、非常に効率よく魅力的なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-04-11T17:59:56Z) - HSTR-Net: High Spatio-Temporal Resolution Video Generation For Wide Area
Surveillance [4.125187280299246]
本稿では,HSTRビデオ生成における複数のビデオフィードの利用について述べる。
主な目的は、HSLFとLSHFビデオの融合によるHSTRビデオを作成することである。
論文 参考訳(メタデータ) (2022-04-09T09:23:58Z) - STRPM: A Spatiotemporal Residual Predictive Model for High-Resolution
Video Prediction [78.129039340528]
本稿では,高解像度映像予測のための時間残差予測モデル(STRPM)を提案する。
STRPMは、既存の様々な方法と比較して、より満足な結果を得ることができる。
実験の結果, STRPMは既存手法と比較して良好な結果が得られた。
論文 参考訳(メタデータ) (2022-03-30T06:24:00Z) - Fast Online Video Super-Resolution with Deformable Attention Pyramid [172.16491820970646]
ビデオスーパーレゾリューション(VSR)には、ビデオストリーミングやテレビなど、厳格な因果性、リアルタイム、レイテンシの制約を課す多くのアプリケーションがある。
変形性アテンションピラミッド(DAP)に基づく繰り返しVSRアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-02-03T17:49:04Z) - Real-Time Super-Resolution System of 4K-Video Based on Deep Learning [6.182364004551161]
ビデオレゾリューション(VSR)技術は低品質のビデオ計算において優れており、職業ベースのアルゴリズムによって生じる不快なブラー効果を回避している。
本稿では、リアルタイムVSシステムの可能性について検討し、EGVSRと呼ばれる効率的な汎用VSRネットワークを設計する。
現在最も先進的なVSRネットワークであるTecoGANと比較して、密度の84%削減と7.92倍の性能向上を実現している。
論文 参考訳(メタデータ) (2021-07-12T10:35:05Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
単純な解決策は、ビデオフレーム(VFI)とビデオ超解像(VSR)の2つのサブタスクに分割することである。
時間合成と空間超解像はこの課題に関係している。
LFR,LRビデオからHRスローモーション映像を直接合成するワンステージ時空間ビデオ超解像フレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-26T16:59:48Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
深部畳み込みニューラルネットワーク(CNN)の発展により,ビデオ超解像法(VSR)は近年,顕著な成功を収めている。
本稿では,動作補償を効率的に捕捉し,適応的にネットワークにフィードバックする,シンプルで効果的なブロックである動き適応型フィードバックセル(MAFC)を提案する。
論文 参考訳(メタデータ) (2020-02-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。