A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
- URL: http://arxiv.org/abs/2504.15654v2
- Date: Sun, 27 Apr 2025 15:39:59 GMT
- Title: A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
- Authors: Md Abdul Baset Sarker, Art Nguyen, Sigmond Kukla, Kevin Fite, Masudul H. Imtiaz,
- Abstract summary: This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities.<n>The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand.
- Score: 0.33554367023486936
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both accessible and affordable for low-income families. Using 3D printing technology and integrating advanced machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c) ultra-low-power operation that delivers high performance within constrained power and resource limits.
Related papers
- Visuo-Tactile Object Pose Estimation for a Multi-Finger Robot Hand with Low-Resolution In-Hand Tactile Sensing [9.970043211592058]
Accurate 3D pose estimation of grasped objects is an important prerequisite for robots to perform assembly or in-hand manipulation tasks.
We propose that combining visual information and proprioception with binary, low-resolution tactile contact measurements can mitigate this issue.
arXiv Detail & Related papers (2025-03-25T17:53:53Z) - Validation of Human Pose Estimation and Human Mesh Recovery for Extracting Clinically Relevant Motion Data from Videos [79.62407455005561]
Marker-less motion capture using human pose estimation produces results in-line with the results of both the IMU and MoCap kinematics.<n>While there is still room for improvement when it comes to the quality of the data produced, we believe that this compromise is within the room of error.
arXiv Detail & Related papers (2025-03-18T22:18:33Z) - AI-Powered Camera and Sensors for the Rehabilitation Hand Exoskeleton [0.393259574660092]
This project presents a vision-enabled rehabilitation hand exoskeleton to assist disabled persons in their hand movements.
The design goal was to create an accessible tool to help with a simple interface requiring no training.
arXiv Detail & Related papers (2024-08-09T04:47:37Z) - Using Explainable AI for EEG-based Reduced Montage Neonatal Seizure Detection [2.206534289238751]
The gold-standard for neonatal seizure detection currently relies on continuous video-EEG monitoring.
A novel explainable deep learning model to automate the neonatal seizure detection process with a reduced EEG montage is proposed.
The presented model achieves an absolute improvement of 8.31% and 42.86% in area under curve (AUC) and recall, respectively.
arXiv Detail & Related papers (2024-06-04T10:53:56Z) - EyeLS: Shadow-Guided Instrument Landing System for Intraocular Target
Approaching in Robotic Eye Surgery [51.05595735405451]
Robotic ophthalmic surgery is an emerging technology to facilitate high-precision interventions such as retina penetration in subretinal injection and removal of floating tissues in retinal detachment.
Current image-based methods cannot effectively estimate the needle tip's trajectory towards both retinal and floating targets.
We propose to use the shadow positions of the target and the instrument tip to estimate their relative depth position.
Our method succeeds target approaching on a retina model, and achieves an average depth error of 0.0127 mm and 0.3473 mm for floating and retinal targets respectively in the surgical simulator.
arXiv Detail & Related papers (2023-11-15T09:11:37Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose Estimation of Surgical Instruments [64.59698930334012]
We present a multi-camera capture setup consisting of static and head-mounted cameras.<n>Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.<n>Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Design of an Affordable Prosthetic Arm Equipped with Deep Learning
Vision-Based Manipulation [0.0]
This paper lays the complete outline of the design process of an affordable and easily accessible novel prosthetic arm.
The 3D printed prosthetic arm is equipped with a depth camera and closed-loop off-policy deep learning algorithm to help form grasps to the object in view.
We were able to achieve a 78% grasp success rate on previously unseen objects and generalize across multiple objects for manipulation tasks.
arXiv Detail & Related papers (2021-03-03T00:35:06Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - One-shot action recognition towards novel assistive therapies [63.23654147345168]
This work is motivated by the automated analysis of medical therapies that involve action imitation games.
The presented approach incorporates a pre-processing step that standardizes heterogeneous motion data conditions.
We evaluate the approach on a real use-case of automated video analysis for therapy support with autistic people.
arXiv Detail & Related papers (2021-02-17T19:41:37Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - Towards Creating a Deployable Grasp Type Probability Estimator for a
Prosthetic Hand [11.008123712007402]
InceptionV3 achieves highest accuracy with 0.95 angular similarity followed by 1.4 MobileNetV2 with 0.93 at 20% the amount of operations.
Our work enables augmenting EMG intent inference with physical state probability through machine learning and computer vision method.
arXiv Detail & Related papers (2021-01-13T21:39:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.