論文の概要: Automated Creativity Evaluation for Large Language Models: A Reference-Based Approach
- arxiv url: http://arxiv.org/abs/2504.15784v1
- Date: Tue, 22 Apr 2025 10:52:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 20:54:31.706375
- Title: Automated Creativity Evaluation for Large Language Models: A Reference-Based Approach
- Title(参考訳): 大規模言語モデルの創造性自動評価:参照に基づくアプローチ
- Authors: Ruizhe Li, Chiwei Zhu, Benfeng Xu, Xiaorui Wang, Zhendong Mao,
- Abstract要約: 本稿では,創造性を製品として評価するTorance Test of Creative Writing (TTCW)に基づく自動評価手法を提案する。
提案手法は、高品質な参照テキストに対して生成されたクリエイティブテキストをスコアリングする参照ベースのLikertスタイルのアプローチを用いる。
- 参考スコア(独自算出の注目度): 32.654673913638426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Creative writing is a key capability of Large Language Models (LLMs), with potential applications in literature, storytelling, and various creative domains. However, evaluating the creativity of machine-generated texts remains a significant challenge, as existing methods either rely on costly manual annotations or fail to align closely with human assessments. In this paper, we propose an effective automated evaluation method based on the Torrance Test of Creative Writing (TTCW), which evaluates creativity as product. Our method employs a reference-based Likert-style approach, scoring generated creative texts relative to high-quality reference texts across various tests. Experimental results demonstrate that our method significantly improves the alignment between LLM evaluations and human assessments, achieving a pairwise accuracy of 0.75 (+15\%).
- Abstract(参考訳): クリエイティブ・ライティング(Creative writing)は、文学、ストーリーテリング、および様々な創造的ドメインに潜在的に適用可能な、Large Language Models(LLM)の重要な機能である。
しかしながら、機械生成テキストの創造性を評価することは大きな課題であり、既存の手法はコストのかかる手作業によるアノテーションに頼るか、人間による評価と密接に一致しない。
本稿では,創造性を製品として評価するTorance Test of Creative Writing (TTCW)に基づく効果的な自動評価手法を提案する。
提案手法は参照ベースのLikertスタイルの手法を用いて,様々なテストにおいて高品質な参照テキストに対して生成したクリエイティブテキストをスコアリングする。
実験の結果, LLM評価と人的評価の整合性は有意に向上し, 対角精度は 0.75 (+15\%) であることがわかった。
関連論文リスト
- Optimizing the role of human evaluation in LLM-based spoken document summarization systems [0.0]
生成AIコンテンツに適した音声文書要約のための評価パラダイムを提案する。
実験設計における堅牢性, 再現性, 信頼性を確保するために, 詳細な評価基準とベストプラクティスガイドラインを提供する。
論文 参考訳(メタデータ) (2024-10-23T18:37:14Z) - Automated Genre-Aware Article Scoring and Feedback Using Large Language Models [8.10826723408637]
本稿では,高度知的物品スコアリングシステムの開発に焦点をあてる。
著作物の全体的な品質を評価し、様々なジャンルに合わせた詳細な特徴ベースのスコアを提供する。
論文 参考訳(メタデータ) (2024-10-18T04:13:51Z) - An Automatic and Cost-Efficient Peer-Review Framework for Language Generation Evaluation [29.81362106367831]
既存の評価手法は、しばしば高いコスト、限られたテスト形式、人間の参照の必要性、体系的な評価バイアスに悩まされる。
人間のアノテーションに依存する以前の研究とは対照的に、Auto-PREはそれら固有の特性に基づいて自動的に評価者を選択する。
実験結果から,我々のAuto-PREは最先端の性能を低コストで達成できることが示された。
論文 参考訳(メタデータ) (2024-10-16T06:06:06Z) - Good Idea or Not, Representation of LLM Could Tell [86.36317971482755]
我々は、大規模言語モデルの知識を活用し、科学的アイデアのメリットを評価することを目的としたアイデアアセスメントに焦点をあてる。
我々は、このタスクに対する様々なアプローチのパフォーマンスを訓練し評価するために、細心の注意を払って設計された、フルテキストを持つ約4万の原稿からベンチマークデータセットをリリースする。
その結果, 大規模言語モデルの表現は, 生成出力よりもアイデアの価値を定量化する可能性が高いことが示唆された。
論文 参考訳(メタデータ) (2024-09-07T02:07:22Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
大きな言語モデル(LLM)は、人間のような会話を生成できる。
BLEUやROUGEのような従来のメトリクスは、このような生成出力の微妙な意味と文脈的な豊かさを捉えるには不十分である。
本稿では,複数のLSM-as-judgesを活用することで,評価プロセスを自動化する基準誘導型判定手法を提案する。
論文 参考訳(メタデータ) (2024-08-17T16:01:45Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instructは、疑似参照でポイントワイズした批評を取得し、マルチパスプロンプトを通じてこれらの批評を修正できる。
CritiqueLLMは、ChatGPTとすべてのオープンソースベースラインを上回るように実証的に示されています。
論文 参考訳(メタデータ) (2023-11-30T16:52:42Z) - Evaluating Large Language Model Creativity from a Literary Perspective [13.672268920902187]
本稿では,大規模言語モデルが創造的記述プロセスにおいて補助ツールとして機能する可能性を評価する。
我々は,背景記述をインターリーブする対話的かつ多声的なプロンプト戦略,構成を案内する指示,対象スタイルのテキストのサンプル,与えられたサンプルの批判的議論を開発する。
論文 参考訳(メタデータ) (2023-11-30T16:46:25Z) - Art or Artifice? Large Language Models and the False Promise of
Creativity [53.04834589006685]
本稿では,創造性を製品として評価するTorrance Test of Creative Writing (TTCW)を提案する。
TTCWは14のバイナリテストで構成されており、Fluency、Flexibility、Originality、Elaborationの3次元に分かれている。
分析の結果,LPM生成したストーリーはプロのストーリーよりもTTCWが3~10倍少ないことが判明した。
論文 参考訳(メタデータ) (2023-09-25T22:02:46Z) - Calibrating LLM-Based Evaluator [92.17397504834825]
マルチステージで勾配のないアプローチであるAutoCalibrateを提案し,LLMに基づく評価器を人間の好みに合わせて調整・調整する。
人間の嗜好を明示的にモデル化する代わりに、まず暗黙的に人間のラベルに含めます。
複数のテキスト品質評価データセットに関する実験は、校正による専門家評価との相関性を大幅に改善したことを示す。
論文 参考訳(メタデータ) (2023-09-23T08:46:11Z) - Exploring the Use of Large Language Models for Reference-Free Text
Quality Evaluation: An Empirical Study [63.27346930921658]
ChatGPTは、参照なしで様々な視点からテキスト品質を効果的に評価することができる。
ChatGPTを用いてテキスト品質を測定するExplicit Scoreは、3つの手法の中で最も効果的で信頼性の高い方法である。
論文 参考訳(メタデータ) (2023-04-03T05:29:58Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。