論文の概要: Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
- arxiv url: http://arxiv.org/abs/2504.15929v2
- Date: Thu, 24 Apr 2025 01:26:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.796968
- Title: Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
- Title(参考訳): 医用ビジョンランゲージモデルのためのメタエンティティ駆動トリプルトマイニング
- Authors: Saban Ozturk, Melih B. Yilmaz, Muti Kara, M. Talat Yavuz, Aykut Koç, Tolga Çukur,
- Abstract要約: 既存のアライメント手法は、微粒な病理属性の分離よりも病気のクラス間の分離を優先する。
本稿では,マルチモーダル三重項学習による画像テキストアライメントを向上させる新しい手法であるMedTrimを提案する。
我々の実証では,MedTrimは,最先端のアライメント手法と比較して,下流検索および分類タスクの性能を向上させることが示されている。
- 参考スコア(独自算出の注目度): 9.76070837929117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
- Abstract(参考訳): 画像診断は画像と放射線学のレポートの解釈に頼っているが、データ量の増加は医療専門家に多大な圧力を与え、エラーの増加とワークフローのバックログをもたらす。
医用視覚言語モデル(med-VLM)はマルチモーダル画像データ、特に胸部X線(CXR)評価において、画像とテキストの表現の整合性に関するパフォーマンスのヒンジを効率的に処理する強力なフレームワークとして登場した。
既存のアライメント手法は、主に対照的な学習に基づいており、位置、サイズ、重大さといった微粒な病理特性の分離よりも病気のクラス間の分離を優先し、最適以下の表現をもたらす。
本稿では,MedTrim(Meta-entity-driven Triplet mining, メタエンタリティ駆動トリプレットマイニング)を提案する。
幅広い病気のクラスを分離する一般的なアライメント法とは異なり、MedTrimは構造化されたメタエンタリティ情報を活用して、微妙だが臨床的に重要なクラス内変異を保存する。
この目的のために、我々はまず、CXRレポートから病理特化メタエンティティを抽出するオントロジーに基づくエンティティ認識モジュールを導入する。
そこで本研究では,三重項採掘における試料選択の精密化のために,病気のクラスと形容詞/方向記述子に基づくサンプル間類似度を総合的に測定するスコア関数を導入する。
最後に, 詳細な病理特性を共有するサンプル間での, 内部および横断的なアライメントを明確にするためのマルチモーダル三重項アライメント手法を提案する。
我々の実証では,MedTrimは,最先端のアライメント手法と比較して,下流検索および分類タスクの性能を向上させることが示されている。
関連論文リスト
- MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
稀ながら臨床的に重要な画像モダリティのための医用画像分割モデルの訓練は、注釈付きデータの不足により困難である。
本稿では、生成モデルを利用してトレーニングデータを合成し、未表現のモダリティに対するセグメンテーションモデルを訓練する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - Enhancing Multimodal Medical Image Classification using Cross-Graph Modal Contrastive Learning [9.902648398258117]
本稿では,医用画像分類を改善するために,マルチモーダル構造化データを対象としたクロスグラフ・モーダルコントラスト学習フレームワークを提案する。
提案手法は、パーキンソン病(PD)データセットと公共メラノーマデータセットの2つのデータセットで評価される。
以上の結果から,CGMCLは従来手法よりも精度,解釈可能性,早期疾患予測に優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-10-23T01:25:25Z) - Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Exemplar-based Medical Image(CMEMS)のためのクロスモデル相互学習フレームワーク
外来医用画像のためのクロスモデル相互学習フレームワーク(CMEMS)について紹介する。
論文 参考訳(メタデータ) (2024-04-18T00:18:07Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
アイゲイズガイドマルチモーダルアライメント(EGMA)フレームワークは、アイゲイズデータを利用して、医用視覚的特徴とテキスト的特徴のアライメントを改善する。
我々は4つの医療データセット上で画像分類と画像テキスト検索の下流タスクを行う。
論文 参考訳(メタデータ) (2024-03-19T03:59:14Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
医用画像における視覚的属性は、医用画像の診断関連成分を明確にすることを目指している。
本稿では、潜在拡散モデルとドメイン固有大言語モデルを組み合わせた新しい生成的視覚属性手法を提案する。
結果として生じるシステムは、ゼロショット局所化疾患誘導を含む様々な潜在能力を示す。
論文 参考訳(メタデータ) (2024-01-02T19:51:49Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Multi-Granularity Cross-modal Alignment for Generalized Medical Visual
Representation Learning [24.215619918283462]
本報告では, 医用画像の表現を直接学習するための新しい枠組みについて述べる。
本フレームワークは,医用画像と放射線学レポートの自然に現れる意味的対応を3段階に分けて活用する。
論文 参考訳(メタデータ) (2022-10-12T09:31:39Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。