Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
- URL: http://arxiv.org/abs/2504.15929v2
- Date: Thu, 24 Apr 2025 01:26:34 GMT
- Title: Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
- Authors: Saban Ozturk, Melih B. Yilmaz, Muti Kara, M. Talat Yavuz, Aykut Koç, Tolga Çukur,
- Abstract summary: Existing alignment methods prioritize separation between disease classes over segregation of fine-grained pathology attributes.<n>Here, we propose MedTrim, a novel method that enhances image-text alignment through multimodal triplet learning.<n>Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
- Score: 9.76070837929117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
Related papers
- MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Enhancing Multimodal Medical Image Classification using Cross-Graph Modal Contrastive Learning [9.902648398258117]
This paper proposes a novel Cross-Graph Modal Contrastive Learning framework for multimodal structured data to improve medical image classification.<n>The proposed approach is evaluated on two datasets: a Parkinson's disease (PD) dataset and a public melanoma dataset.<n>Results demonstrate that CGMCL outperforms conventional unimodal methods in accuracy, interpretability, and early disease prediction.
arXiv Detail & Related papers (2024-10-23T01:25:25Z) - Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
We introduce a novel Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
arXiv Detail & Related papers (2024-04-18T00:18:07Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image.
We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models.
The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction.
arXiv Detail & Related papers (2024-01-02T19:51:49Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Multi-Granularity Cross-modal Alignment for Generalized Medical Visual
Representation Learning [24.215619918283462]
We present a novel framework for learning medical visual representations directly from paired radiology reports.
Our framework harnesses the naturally exhibited semantic correspondences between medical image and radiology reports at three different levels.
arXiv Detail & Related papers (2022-10-12T09:31:39Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.