論文の概要: Navigating the State of Cognitive Flow: Context-Aware AI Interventions for Effective Reasoning Support
- arxiv url: http://arxiv.org/abs/2504.16021v1
- Date: Tue, 22 Apr 2025 16:35:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 17:24:55.9898
- Title: Navigating the State of Cognitive Flow: Context-Aware AI Interventions for Effective Reasoning Support
- Title(参考訳): 認知フローの状態をナビゲートする:効果的な推論支援のためのコンテキスト認識型AIインターベンション
- Authors: Dinithi Dissanayake, Suranga Nanayakkara,
- Abstract要約: フロー理論は、個人が深い焦点と本質的な動機を経験する最適な認知状態を記述する。
AIが強化された推論では、認知の流れを乱す介入は意思決定を強化するよりも妨げられる。
本稿では、タイプ、タイミング、スケールに基づいて介入を適応する文脈認識型認知強化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.758533259752144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Flow theory describes an optimal cognitive state where individuals experience deep focus and intrinsic motivation when a task's difficulty aligns with their skill level. In AI-augmented reasoning, interventions that disrupt the state of cognitive flow can hinder rather than enhance decision-making. This paper proposes a context-aware cognitive augmentation framework that adapts interventions based on three key contextual factors: type, timing, and scale. By leveraging multimodal behavioral cues (e.g., gaze behavior, typing hesitation, interaction speed), AI can dynamically adjust cognitive support to maintain or restore flow. We introduce the concept of cognitive flow, an extension of flow theory in AI-augmented reasoning, where interventions are personalized, adaptive, and minimally intrusive. By shifting from static interventions to context-aware augmentation, our approach ensures that AI systems support deep engagement in complex decision-making and reasoning without disrupting cognitive immersion.
- Abstract(参考訳): フロー理論は、タスクの難易度がスキルレベルと一致した場合、個人が深い焦点と本質的なモチベーションを経験する最適な認知状態を記述する。
AIが強化された推論では、認知の流れを乱す介入は意思決定を強化するよりも妨げられる。
本稿では,3つの文脈要因(タイプ,タイミング,スケール)に基づいて介入を適応させる,文脈認識型認知強化フレームワークを提案する。
マルチモーダルな振る舞いの手がかり(例えば、視線行動、タイピングのためらい、相互作用速度)を活用することで、AIは認知支援を動的に調整してフローの維持や回復を行うことができる。
我々は、AI強化推論におけるフロー理論の拡張である認知フローの概念を導入し、介入はパーソナライズされ、適応され、最小限の侵入力を持つ。
静的な介入からコンテキスト認識の強化に移行することで、私たちのアプローチは、認知的没入を阻害することなく、AIシステムが複雑な意思決定と推論における深い関与をサポートすることを保証します。
関連論文リスト
- Mitigating Societal Cognitive Overload in the Age of AI: Challenges and Directions [0.9906787204170321]
AI時代の情報と複雑さの希薄化によって引き起こされる社会的認知過負荷は、人間の幸福と社会的レジリエンスにとって重要な課題となる。
本稿では、認知的過負荷を軽減することは、現在の生活を改善するために必要であるだけでなく、高度なAIの潜在的なリスクをナビゲートするための重要な前提条件でもある、と論じる。
論文 参考訳(メタデータ) (2025-04-28T17:06:30Z) - Embodied World Models Emerge from Navigational Task in Open-Ended Environments [5.785697934050656]
本研究では、ニューラルネットワークが相互作用によって空間概念を自律的に内部化できるかどうかを検討する。
エージェントは,方向,距離,障害物回避などの空間特性を符号化することができることを示す。
論文 参考訳(メタデータ) (2025-04-15T17:35:13Z) - A Multi-Layered Research Framework for Human-Centered AI: Defining the Path to Explainability and Trust [2.4578723416255754]
人間中心型AI(HCAI)は人間の価値観との整合性を強調し、説明可能なAI(XAI)はAI決定をより理解しやすくすることで透明性を高める。
本稿では,HCAI と XAI を橋渡し,構造的説明可能性パラダイムを確立する新しい3層フレームワークを提案する。
我々の発見は、透明性、適応性、倫理的に整合したAIシステムを育成するHCXAI(Human-Centered Explainable AI)を前進させた。
論文 参考訳(メタデータ) (2025-04-14T01:29:30Z) - From Consumption to Collaboration: Measuring Interaction Patterns to Augment Human Cognition in Open-Ended Tasks [2.048226951354646]
ジェネレーティブAIの台頭、特に大規模言語モデル(LLM)は、知識労働における認知過程を根本的に変えるものである。
本稿では、認知活動モード(探索対搾取)と認知エンゲージメントモード(建設対有害)の2つの側面に沿って相互作用パターンを分析する枠組みを提案する。
論文 参考訳(メタデータ) (2025-04-03T17:20:36Z) - Cognitive AI framework: advances in the simulation of human thought [0.0]
Human Cognitive Simulation Frameworkは、人間の認知能力を人工知能システムに統合する大きな進歩を表している。
短期記憶(会話コンテキスト)、長期記憶(対話コンテキスト)、高度な認知処理、効率的な知識管理を融合することにより、コンテキストコヒーレンスと永続的なデータストレージを確保する。
このフレームワークは、継続的学習アルゴリズム、持続可能性、マルチモーダル適応性に関する将来の研究の基礎を築き、Cognitive AIを新興分野におけるトランスフォーメーションモデルとして位置づけている。
論文 参考訳(メタデータ) (2025-02-06T17:43:35Z) - Engaging with AI: How Interface Design Shapes Human-AI Collaboration in High-Stakes Decision-Making [8.948482790298645]
各種意思決定支援機構がユーザエンゲージメント,信頼,人間とAIの協調タスクパフォーマンスに与える影響について検討する。
その結果,AIの信頼性レベルやテキスト説明,パフォーマンス視覚化などのメカニズムにより,人間とAIの協調作業性能が向上することが判明した。
論文 参考訳(メタデータ) (2025-01-28T02:03:00Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
我々は、プレッシャーと説明可能なAI(XAI)技術がAIアドバイステイク行動とどのように相互作用するかを示す。
我々の結果は、圧力とXAIの異なる組み合わせで複雑な相互作用効果を示し、AIアドバイスの行動を改善するか、悪化させるかのどちらかを示す。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
ヒューリスティック分析推論(HAR)戦略は、モデル決定のための合理化のコヒーレンスを大幅に改善する。
以上の結果から, PLM推論の一貫性と信頼性を効果的に向上できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-24T19:46:04Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。