論文の概要: Explainable Unsupervised Anomaly Detection with Random Forest
- arxiv url: http://arxiv.org/abs/2504.16075v1
- Date: Tue, 22 Apr 2025 17:54:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 16:57:57.018001
- Title: Explainable Unsupervised Anomaly Detection with Random Forest
- Title(参考訳): ランダムフォレストによる説明不能な異常検出
- Authors: Joshua S. Harvey, Joshua Rosaler, Mingshu Li, Dhruv Desai, Dhagash Mehta,
- Abstract要約: 我々は、類似性学習と異常検出の改善のための教師なしランダムフォレストの使用について述べる。
ランダムフォレストを訓練して、実データ境界上の均一分布からサンプリングされた実データと合成データとを判別することにより、データを異方的に変換する距離測定値を得る。
この変換から得られた距離を用いることで、他のよく使われる検出器と比較して、教師なし異常検出の精度が向上することを示す。
- 参考スコア(独自算出の注目度): 1.0485739694839669
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We describe the use of an unsupervised Random Forest for similarity learning and improved unsupervised anomaly detection. By training a Random Forest to discriminate between real data and synthetic data sampled from a uniform distribution over the real data bounds, a distance measure is obtained that anisometrically transforms the data, expanding distances at the boundary of the data manifold. We show that using distances recovered from this transformation improves the accuracy of unsupervised anomaly detection, compared to other commonly used detectors, demonstrated over a large number of benchmark datasets. As well as improved performance, this method has advantages over other unsupervised anomaly detection methods, including minimal requirements for data preprocessing, native handling of missing data, and potential for visualizations. By relating outlier scores to partitions of the Random Forest, we develop a method for locally explainable anomaly predictions in terms of feature importance.
- Abstract(参考訳): 本稿では,教師なしランダムフォレストを用いた類似性学習と教師なし異常検出の改善について述べる。
ランダムフォレストを訓練して、実データ境界上の均一分布からサンプリングされた実データと合成データとを判別することにより、データ多様体の境界で距離を拡大し、異方的にデータを変換する距離測定値を得る。
この変換から得られた距離を用いることで、多くのベンチマークデータセット上で実証された他の一般的な検出器と比較して、教師なし異常検出の精度が向上することを示す。
性能の改善に加えて、この手法はデータ前処理の最小限の要件、欠落したデータのネイティブハンドリング、視覚化の可能性など、他の教師なしの異常検出方法よりも利点がある。
ランダムフォレストの区分にアウトリースコアを関連付けることにより,特徴量の観点から局所的に説明可能な異常予測法を開発した。
関連論文リスト
- Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
異常検出は産業アプリケーションの品質管理において重要な役割を担っている。
既存の方法は、一般化可能なモデルをトレーニングすることで、ドメインシフトに対処しようとする。
提案手法は,最先端の異常検出法や領域適応法と比較して,優れた結果を示す。
論文 参考訳(メタデータ) (2025-03-19T05:25:52Z) - Fuzzy Granule Density-Based Outlier Detection with Multi-Scale Granular Balls [65.44462297594308]
外乱検出は、正常なデータの分布から大きく逸脱する異常なサンプルの同定を指す。
ほとんどの教師なしの外れ値検出方法は、指定された外れ値を検出するために慎重に設計されている。
ファジィ粗集合に基づくマルチスケールアウトレイラ検出手法を提案し,様々な種類のアウトレイラを同定する。
論文 参考訳(メタデータ) (2025-01-06T12:35:51Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
ほとんどの深層異常検出モデルは、データセットから正規性を学ぶことに基づいている。
実際、正規性仮定は実データ分布の性質によってしばしば破られる。
このギャップを減らし、より優れた正規性表現を実現するための学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T02:36:19Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
異常検出は,異常の多様性と大規模異常データ取得の困難さにより異常の欠如に悩まされた。
本稿では,自己コントラストに基づく異常検出パラダイムであるAdversarial Generative Anomaly Detection (AGAD)を提案する。
本手法は,教師付きおよび半教師付き両方の異常検出シナリオに対して擬似異常データを生成する。
論文 参考訳(メタデータ) (2023-04-09T10:40:02Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Positive Difference Distribution for Image Outlier Detection using
Normalizing Flows and Contrastive Data [2.9005223064604078]
例えば、標準的なログライクリーフトレーニングによる正規化フローは、外れ値スコアとして不十分である。
本稿では,外乱検出のための非ラベル付き補助データセットと確率的外乱スコアを提案する。
これは、分布内と対照的な特徴密度の間の正規化正の差を学ぶことと等価であることを示す。
論文 参考訳(メタデータ) (2022-08-30T07:00:46Z) - Augment to Detect Anomalies with Continuous Labelling [10.646747658653785]
異常検出は、トレーニング観察と何らかの点で異なるサンプルを認識することである。
最近の最先端のディープラーニングに基づく異常検出手法は、計算コスト、複雑さ、不安定な訓練手順、非自明な実装に悩まされている。
我々は、軽量な畳み込みニューラルネットワークを訓練し、異常検出における最先端の性能に到達するための単純な学習手順を活用する。
論文 参考訳(メタデータ) (2022-07-03T20:11:51Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Projected Sliced Wasserstein Autoencoder-based Hyperspectral Images
Anomaly Detection [42.585075865267946]
本稿では,PSW自動エンコーダを用いた異常検出手法を提案する。
特に、計算フレンドリーな固有分解法を利用して、高次元データをスライスする主成分を見つける。
様々な実世界のハイパースペクトル異常検出ベンチマークで実施した総合的な実験は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-12-20T09:21:02Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z) - Interpretable Anomaly Detection with Mondrian P{\'o}lya Forests on Data
Streams [6.177270420667713]
スケールでの異常検出は、非常に困難な実用性の問題である。
最近の研究は、異常検出のためのデータを要約するために、(ランダムな)$k$emphd-treesのバリエーションを合体させてきた。
これらの手法は、容易に解釈できないアドホックスコア関数に依存している。
我々はこれらの手法をモンドリアンポリアフォレストと呼ぶ確率的枠組みでコンテキスト化する。
論文 参考訳(メタデータ) (2020-08-04T13:19:07Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。